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Abstract—A mechanical model of the eye considering it as a 

cable-driven parallel kinematics mechanism is proposed. The 

inverse kinematics of the eye is carried out and the 

isodeformation curves of the extraocular muscles are obtained. 

The results agree with those previously reported by other, more 

complex, analytical approaches and with physiological 

measurements. This effort is a contribution to the modeling of 

the kinematics of the eye from the standpoint of robotics and 

mechanism theory and it could be used in eye movement studies 

to explore brain function. This work may support the 

neurologically-constrained argument for the positioning of the 

eye. 
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I. INTRODUCTION 

 

The human eye is a sophisticated biological device whose 

motion obeys well established physiological rules such as 

Listing’s law (LL) [1, 2, 3] and Sherrington’s law of 

reciprocal innervation [4]. LL, for instance, describes the 

change of orientation of the eye as if the pupil traveled along a 

great arc starting at a reference position. It is an issue of lively 

controversy among physiologists whether this is a neural or 

mechanical phenomenon [5, 6, 7]. 

 

Analytical approaches to model the kinematics of the eye have 
been proposed; however, some of these works focus on 

describing the geometry involved without referring to the 

extraocular muscles (EOM) [8, 9], while others are aimed to 

the design of robotic eyes, using simplifications which do not 

describe the actual behavior of the EOMs, or they are not 

intended to predict the interplay between the EOMs [10, 11]. 

 

Theoretical approaches to describe the behavior of the EOMs 

are reported in the literature. Boeder proposed a model that 

predicts the contractive states of the muscles using analytic 

geometry considerations [12]. A classical paper by Robinson 
computes the force required in each muscle to keep the 

eyeball in static equilibrium at a prescribed gaze direction; an 

empirical relationship is used to numerically calculate the 

length and innervation of each EOM [13]; a computer 

application that allows to plot isoinnervation curves, among 

other plots, has been developed based on this theory [14]. Wei 

et al. simulated the EOMs as strands, i.e. splines with inertia, 

based on which equations of motion are obtained and, through 

an optimization procedure, the EOM innervations are 

computed [15]. More recently, finite element models (FEM) 

of the extraocular muscles have been proposed to describe the 
mechanical properties of the eye under static force tests and 

the medial rectus force for a specific orientation of the eye 

[16]. However, the FEM and the optimization-based 

approaches are not meant to model how motion planning of 

the eye is performed by the brain and rely on initial guesses of 

muscle innervation. It is not clear whether the brain performs 

such a task. 

 

From the standpoint of robotics and mechanism theory, the 

kinematics of the eye and the interplay between the EOMs is a 

motion planning problem, which can be modeled based on 

techniques commonly used in these fields, such as the theory 
of parallel robots [17]. This paper proposes a mechanical 

model of the eye considering it as a cable-driven parallel 

kinematics mechanism, for which, the inverse kinematics is 

carried out. From this procedure, the deformation state of the 

EOMs required for any gaze direction is obtained and 

isodeformation plots are constructed. The results agree with 

those previously reported by other, more complex, analytical 

approaches, as previously discussed, and with physiological 

measurements. They may also support the claim that motion 

planning of the eye is neurologically rather than mechanically 

determined. The effort developed here may prove as a 
simpler, yet useful contribution to the modeling of the 

kinematics of the eye and to the understanding of the motion 

planning by the brain. This methodology could be used to 

develop plausible models in eye movement studies, which 

have gained renewed interest as a convenient alternative to 

evaluate brain function, since there is a need of modeling 

frameworks in this area given the limitations of 

physiologically invasive experiments [18]. 
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II. ANATOMY AND PHYSIOLOGICAL 

LAWS OF EYE ROTATION 

 

In this section, a description of the anatomy of the EOMs and 
the physiological rules that are observed in normal eye 

movements are presented, as far as to what pertains to this 

paper. 

 

A. Extraocular muscles.  

 

The human eye is driven by three pairs of agonist and 

antagonist extraocular muscles, which allow for the 

orientation of the eyeball in the desired gaze direction. The 

superior rectus (SR) and the inferior rectus (IR) have the main 

function of pointing the eyeball upwards, i.e. supraduction, 
and downwards, i.e. infraduction, respectively; the lateral 

rectus (LR) and the medial rectus (MR) move the eye 

outwards, i.e. abduction, and inwards, i.e. adduction, 

respectively; the superior oblique (SO) and the inferior 

oblique (IO) rotate the eye torsionally, the SO executes 

internal torsion towards the nose, i.e. intorsion, and the IO 

extorsion, as described in figure 1 for a right eye.  

 

 
 

Figure 1. Movements of the right eyeball as seen from the front of 
the face. 
 

Most orientations of the eyeball require the action of more 

than one EOM; therefore, the interplay between these muscles 

allows for the positioning of the eyeball, which is about 24 

mm in diameter. Table 1 lists the actions in which each EOM 

is involved. The first action is the one where the 

corresponding muscle is the main actuator and the others are 

the secondary actions of the muscle.  

 

All recti originate at the Annulus of Zinn and are about 40 
mm long at their resting length. The SO originates above the 

Annulus of Zinn and passes through the trochlea, a structure 

that acts as a pulley fixed to the socket of the eye on the 

frontal bone; the IO originates at the lacrimal fossa. The 

insertion points of the SR and IR are slightly beyond the north 

and south poles of the eyeball, correspondingly. The insertion 

of the LR and MR is also past the poles along the equator of 
the eyeball. The SO inserts into the eyeball behind the north 

pole; the IO farther behind the south pole. There are anatomic 

measurements of the coordinates of the origin and insertion 

points reported elsewhere in the literature [19]. 

 

Muscle Action 
 

Superior rectus 
Supraduction 

Adduction 

Intorsion 
 

Inferior rectus 
Infraduction 
Adduction 
Extorsion 

Lateral rectus Abduction 
Medial rectus Adduction 

 
Superior oblique 

Intorsion 
Infraduction 

Abduction 
 

Inferior oblique 
Extorsion 

Supraduction 
Abduction 

 

Table 1. Action of extraocular muscles. 

 

Figure 2 depicts the extraocular muscles of a right eye as wire 

segments. Each EOM wraps the globe on a great arc, Ls, 

between its insertion and tangency points and reaches its 

origin through the straight-line segment Lt. In this figure, only 

the segment of the SO that goes from the trochlea to the 

insertion in the eyeball is shown since the length of the 

segment from the trochlea to the origin of this muscle remains 

fixed. 

 
B. Listing’s law and Sherrington’s law.  

 

LL states that any gaze direction the eye is pointing to, is such 

as if it was achieved by a rotation starting from a reference 

position, called the primary position, following a great arc on 

the sphere of the eyeball. This law implies that all the vectors 

about which these rotations occur lie on a single plane, called 

Listing’s plane. Referring to figure 3, z is the direction of the 

primary position, usually assumed when the eye is looking 

straight ahead; s is the unit vector representing the gaze 

direction at a secondary position; n is the unit rotation vector, 

perpendicular to z and s, which lies on Listing’s plane; the 
pupil moves along a great arc, centered at the center point C 

of the eyeball, an angle θ. 

 

Since, geometrically, there are multiple paths that could be 

followed by the eye in order to end at a given gaze direction 

and, thus, with different torsion, i.e. the orientation about the 

direction of sight, but the brain chooses the one specified by 

LL, there is active controversy whether this is a phenomenon 

determined by neurological or mechanical factors [5, 6, 7]. 
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Figure 2. The extraocular muscles of the right eye. Each EOM 

wraps the globe on a great arc, Ls, between corresponding 

insertion and tangency points, and reaches its origin through 

the straight-line segment Lt.   

 
 

 
 

Figure 3. Listing’s law. 

 

There is another well-known physiological fact called 

Sherrington’s law of reciprocal innervation. This law entails 

that while one EOM is innervated, the agonist, its antagonist 
is relaxed. Sherrington’s law is demonstrated by means of 

electromyography (EMG), and not only is it observed in the 

EOMs but also in other agonist-antagonist pairs of muscles in 

the body [4]. 

 

III. INVERSE KINEMATICS OF THE 

EYE 

 

This section briefly describes the representation of rotations 

by means of quaternions. Then, the inverse kinematics of the 

eye is carried out using quaternions to represent the 

orientation of the eye according to Listing’s law. 

 
A. Quaternions.  

 

A unit quaternion � = ��� + ��� + �	
 + ��, representing the 

rotation of a rigid body by an angle θ about the unit axis 

vector � = (��, ��, �	), is built upon the so-called Euler-

Rodrigues parameters of the rotation 

 

�� = �� sin �

�
, �� = �� sin �

�
, �	 = �	 sin �

�
, �� = cos �

�
 .      (1) 

 

These components satisfy the relation  ��
� + ��

� + �	
� + ��

� =
1. The quaternion basis units obey the fundamental 

multiplication rules  �� = �� = 
� = ��
 = −1. 
 

The Cartesian coordinates of a point � = (���, ���, �	
, 0), 

written as a quaternion, are transformed to the coordinates  

� = (���, ���, �	
, 0) after the rotation represented by the 

unit quaternion q, by the quaternion product X = qxq∗∗∗∗, where 

� ∗ = −��� − ��� − �	
 + ��  is the conjugate of q.  

 

Quaternions are geometrically intuitive rotation operators and 

suitable for computational implementation; thus, in this work, 

they are preferred to other representations. A deeper treatment 

of quaternions can be found in theoretical kinematics 

textbooks [20, 21]. 

 
B. Procedure and algorithm. 

 
According to LL and referring to figure 3, the orientation of 
the eye from the primary position, pointing in the direction of 

the unit vector z, to a position where the eye is looking at, 

pointing in the direction of the unit vector s, is achieved by a 

rotation an angle θ about the unit axis vector n perpendicular 

to both, the primary position z and the gaze direction s. This 

rotation can be described by a quaternion q as previously 

discussed. Considering the eyeball a rigid body, all of its 

points must perform the same rotation represented by q, 

including the insertion point of each EOM on the globe. 

 

Therefore, applying this rotation, using the quaternion 

product, to the coordinates of the insertion points of the EOMs 
in the primary position, will result in their coordinates after 

the rotation. Then, the length of each of the EOMs in the final 

position, or gaze direction, can be computed as the sum of the 

arc length of the great arc on the eyeball, connecting the 

insertion and tangency points of a given muscle, and the 

length from the tangency point to the origin of the muscle, O; 

C 

Lt 

Ls 

O 
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Ls and Lt, respectively, in figure 2. This procedure will render 

the length of each EOM required to achieve a desired 

orientation. 

 
The procedure just described assumes that the EOMs 

accommodate on the globe along a great arc; however, 

magnetic resonance imaging (MRI) studies have shown that 

the actual path of the muscles is affected by restraining tissue, 

called active pulleys, that slightly changes the location of the 

insertion and tangency points dependent on gaze direction, 

causing that the muscle does not wrap the sphere along a great 

arc [22]. 

 

It must be noted that the eye is a mechanical system with three 

degrees of freedom, which are required to position the pupil in 
a desired orientation. This can be shown by employing the 

mobility equation for compliant mechanisms [23, 24, 25]. 

However, an equivalent pseudo-rigid-body model allows to 

use the Grubler-Kutzbach criterion for mechanisms with rigid 

links [26]: 

 

                            ! = 6(� − 1) − ∑ (6 − �)$%
&
%'�                  (1)                                         

 
where M is the mobility or number of degrees of freedom, n is 

the number of links and fi is the number of joints with i 

degrees of freedom. 

 

Using the latter approach, considering the wires representing 
the EOMs as equivalent prismatic (P) joints and their insertion 

and origin points as spherical (S) joints, the eye has six P 

joints, thirteen S joints, including the coupling of the globe on 

the eye socket, and fourteen links: the eyeball, the orbit, and 

the links joined by the P joints of the EOMs. Plugging these 

values into the Grubler-Kutzbach equation a mobility of nine 

is obtained. However, six degrees of freedom are passive, i.e. 

the twist of the cables around their own axis, resulting in the 

three degrees of freedom as was already foretold. 

 

Therefore, only the three EOMs with the maximum shortening 
are the ones that should be innervated in order to achieve the 

desired orientation. 

 

The algorithm has been implemented in MATLAB® for a 

right eye of radius r = 12 mm and the center of the globe as 

the origin of coordinates, as illustrated in figure 3, in terms of 

the horizontal gaze angle θh, positive for adduction, negative 

for abduction, and the vertical gaze angle θv, positive for 

supraduction, negative for infraduction, both relative to the 

primary position. The procedure can be summarized as 

follows: 

 

• Compute gaze direction vector,                                         

( = (cos )* sin )+ , sin )* , cos )* cos )+). 

 

• Compute unit axis vector and angle of the rotation, 

� = (, × () ‖, × (‖⁄ , ) = cos0�(, ∙ ( (‖,‖‖(‖)⁄ ). 

 

• Assemble unit quaternion q.                     

 

• Compute location of insertion points i of each EOM 

after the rotation according to quaternion product. 

 

• Compute angle θt between vector from center of the 

globe to tangency point and vector from the center, 

C, to the origin, O, of the EOM, )2 =
cos0�(3 ‖4‖⁄ ). 

 

• Compute angle θi between vector from center of the 

globe to insertion point and vector from the center to 

the origin of the EOM, )% = cos0�(5 ∙ 4 (‖5‖ ‖4‖)⁄ ). 

 

• Compute arc length of EOM segment wrapped 

around the globe, Ls =r(θi – θt); refer to figure 2. 

 

• Compute length of EOM segment from tangency 

point to origin of the muscle, 62 = 7‖4‖� − 3�. 

 

• Compute deformation of EOM, ∆6 = (69 + 62) −
6:, where Lo is the EOM length at primary position. 

 

The coordinates of the insertion points at reference position 

used in this paper, for each of the EOM, are presented in table 
2. These coordinates are relative to a coordinate system 

centered at the right eyeball as depicted in figure 3. The 

Annulus of Zinn, which is the common origin for all recti, has 

coordinates OZINN = (15; 0; -32) in mm. The trochlea, which 

is the origin of the SO neglecting the segment that remains 

constant from the trochlea to the Annulus of Zinn, has the 

coordinates OSO = (15; 12; 8) and the origin of the IO, at the 

lacrimal fossa, has the coordinates OIO = (11; -15; 11).  

 

Muscle Coordinates in mm 
Superior rectus (0; 10; 6.65) 

Inferior rectus (0; -10; 6.65) 

Lateral rectus (-10; 0; 6.65) 

Medial rectus (9.65; 0; 7.14) 

Superior oblique (-2.65; 11; -4) 
Inferior oblique (-9; 0; -7.94) 

 

Table 2. Insertion points at reference position of EOM. 

 

IV. RESULTS AND DISCUSSION 
 

The previous calculation was carried out on each of the EOMs 

for a span of gaze angles, horizontal as well as vertical, 

between −20◦ and 20◦ and isodeformation curves were plotted 

using the contour command in MATLAB®. Each 

isodeformation line is in mm. See figure 4. 

 

These curves reflect the actions of the EOMs as described in 

table 1. Clearly, the main role of the recti muscles is on the 

region of the corresponding graph where the muscles have 



Scientia et Technica Año XXIII, Vol. 23, No. 04, diciembre de 2018. Universidad Tecnológica de Pereira.  

 

 

610 

negative deformation, i.e., contraction. They also show that 

the superior and inferior recti have a share on adduction 

whether the eye is looking up or downwards, respectively. It 

is also shown that the superior and inferior obliques are 

contracted during infraduction and supraduction, respectively, 

which are their secondary actions. Moreover, the three 

innervated muscles required to achieve a given gaze direction 

can be determined from the curves. For instance, when the eye 

is looking upwards and away from the nose, i.e., supraduction 

and abduction, the three actuators are the SR, the LR and the 

IO; when the eye is looking downwards and towards the nose, 
i.e., infraduction and adduction, the three actuators are the IR, 

the MR and the SO. There are gaze directions where up to 

four muscles are contracted, e.g., when looking all the way 

towards the nose, i.e., total adduction, the MR, the SR, the IR, 

and the IO would be contracted; however, only three degrees 

of freedom are required; this is what is known in robotics as a 

redundancy. Even though this paper does not attempt to 

speculate how the brain deals with redundancy, from a 

practical point of view, the three largest deformations would 

be enough to position the eye in the desired orientation. 

 
 

 
 

Figure 4. Isodeformation curves of EOMs of a right eye; level 

curves in mm. 

 

It must be noticed that the pattern observed in the 
isodeformation curves is similar to that of isoinnervation 

curves obtained from electromyography (EMG) 

measurements in monkeys [27], as well as to the patterns 

obtained by more complex approaches, as discussed in 

Section I. For instance, figure 5 shows the results for the 

forces of the recti by the method proposed by Robinson [13], 

which considers the positioning of the eye at a desired 

orientation as a static equilibrium problem; it entails to solve a 

linear system of nine equations and nine unknowns, i.e. the 

magnitude of each of the six extraocular muscle forces and the 

three components of the moment exerted by passive tissue that 

returns the eye to the primary position, for each orientation. 

There is arguably an advantage of the methodology developed 

in the present paper since no system of linear equations is 

required to solve.  
 

Furthermore, the level of deformations is in the range of 

values reported by MRI studies in healthy subjects [28]. 

 

 
Figure 5. Equi-innervation (force) curves of EOMs of a right 

eye; level curves in g. [13] 

 

In general, Sherrington’s law is also evident in the plots. 

Whenever the SR is contracted, the IR is not, and vice versa; 

this reciprocity is also observed between the LR and the MR. 

There are regions where Sherrington’s law seems to be 

violated; but again, mechanical redundancy of the eye can 

explain those exceptions. This interplay is also observed 

between the SO and the IO; however, their main action being 
torsion is not visualized in these plots. 

 

The procedure previously exposed incorporates Listing’s law 

a priori, just to make it in accord with the physiological facts 

observed in normal eyes. However, from a motion planning 

perspective, different criteria could be implemented in order 

to achieve a desired orientation. Therefore, this may suggest 

that LL is neurologically rather than mechanically dictated. 
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V. CONCLUSIONS  

 

This paper presents an approach for the kinematic modeling of 

the eye considering it as a cable-driven parallel kinematics 
mechanism. The inverse kinematics for such a mechanism 

was developed and isodeformation curves of the extraocular 

muscles were obtained. Assumptions were made that deviate 

from the actual eye, such as: the consideration of the eyeball 

as a rigid body, the wrapping of the EOMs along a great arc 

on the globe and neglecting active pulleys. Nevertheless, the 

patterns and the results agree with those reported in the 

literature by other, more complex, analytical approaches and 

with EMG measurements. Moreover, the methodology here 

described is in accord with the physiological laws observed in 

the normal eye.  
 

To the best of our knowledge, this is the first time that the 

theory of parallel kinematics mechanisms has been applied to 

obtain isodeformation curves of EOMs. This is a contribution 

to the kinematics modeling of the eye and to the 

understanding of the motion planning by the brain from the 

standpoint of robotics and mechanism theory.  The approach 

described here may be used in eye movement studies, which 

have gained renewed interest as a convenient alternative to 

evaluate brain function. As a matter of fact, there is a need of 

modeling frameworks for eye movement research given the 

limitations of invasive experiments, thus, the methodology 
proposed here could be useful for that purpose.  Finally, this 

work may support the neurologically-constrained argument 

for the implementation of Listing’s law and the positioning of 

the eye. 
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