[10] G. Dinardo, L. Fabbiano, and G. Vacca, “Fluid flow rate estimation
using acceleration sensors,” in 2013 Seventh International
Conference on Sensing Technology (ICST), 2013, pp. 221–225, DOI:
10.1109/ICSensT.2013.6727646.
[11] L. Fabbiano, G. Vacca, and G. Dinardo, “Smart water grid: A smart
methodology to detect leaks in water distribution networks,”
Measurement, vol. 151, p. 107260, 2020, DOI:
https://DOI.org/10.1016/j.measurement.2019.107260.
[12] H. Göksu, “Flow Measurement by Wavelet Packet Analysis of Sound
Emissions,” Meas. Control, vol. 51, no. 3–4, pp. 104–112, Apr. 2018,
DOI: 10.1177/0020294018768340.
[13] H. Jacobs, Y. Skibbe, M. Booysen, and C. Makwiza, “Correlating
Sound and Flow Rate at a Tap,” Procedia Eng., vol. 119, pp. 864–
873, 2015, DOI: https://DOI.org/10.1016/j.proeng.2015.08.953.
[14] R. Safari and B. Tavassoli, “Initial test and design of a soft sensor for
flow estimation using vibration measurements,” in The 2nd
International Conference on Control, Instrumentation and
Automation, 2011, pp. 809–814, DOI:
10.1109/ICCIAutom.2011.6356765.
[15] Hironori Kakuta; Kajiro Watanabe; Yosuke Kurihara, “Development
of Vibration Sensor With Wide Frequency Range Based on
Condenser Microphone - Estimate System for Water Flow Rate in
Water Pipes -,” World Acad. Sci. Eng. Technol., vol. 6, no. 10, p. 714,
2012, [Online]. Available:
http://waset.org/publications/8417/development-of-vibration-sensor-
with-wide-frequency-range-based-on-condenser-microphone-
estimation-system-for-flow-rate-in-water-pipes-.
[16] A. Sabato, C. Niezrecki, and G. Fortino, “Wireless MEMS-Based
Accelerometer Sensor Boards for Structural Vibration Monitoring: A
Review,” IEEE Sens. J., vol. 17, no. 2, pp. 226–235, 2017, DOI:
10.1109/JSEN.2016.2630008.
[17] L. Zhu, Y. Fu, R. Chow, B. F. Spencer, J. W. Park, and K. Mechitov,
“Development of a high-sensitivitywireless accelerometer for
structural health monitoring,” Sensors (Switzerland), vol. 18, no. 1,
pp. 1–16, 2018, DOI: 10.3390/s18010262.
[18] D. Shravani, Y. R. Prajwal, S. B. Prapulla, N. S. G. R. Salanke, G.
Shobha, and S. F. Ahmad, “A Machine Learning Approach to Water
Leak Localization,” in 2019 4th International Conference on
Computational Systems and Information Technology for Sustainable
Solution (CSITSS), 2019, vol. 4, pp. 1–6, DOI:
10.1109/CSITSS47250.2019.9031010.
[19] S. El-Zahab, E. Mohammed Abdelkader, and T. Zayed, “An
accelerometer-based leak detection system,” Mech. Syst. Signal
Process., vol. 108, pp. 276–291, 2018, DOI:
https://DOI.org/10.1016/j.ymssp.2018.02.030.
[20] P. D. Samuel and D. J. Pines, “A review of vibration-based
techniques for helicopter transmission diagnostics,” J. Sound Vib.,
vol. 282, no. 1, pp. 475–508, 2005, DOI:
https://doi.org/10.1016/j.jsv.2004.02.058.
[21] L. Zhou, F. Duan, M. Corsar, F. Elasha, and D. Mba, “A study on
helicopter main gearbox planetary bearing fault diagnosis,” Appl.
Acoust., vol. 147, pp. 4–14, 2019, DOI:
https://doi.org/10.1016/j.apacoust.2017.12.004.
[22] S. Schmidt, A. Mauricio, P. S. Heyns, and K. C. Gryllias, “A
methodology for identifying information rich frequency bands for
diagnostics of mechanical components-of-interest under time-
varying operating conditions,” Mech. Syst. Signal Process., vol. 142,
p. 106739, 2020, DOI: https://doi.org/10.1016/j.ymssp.2020.106739.
[23] M. I. M. Ismail et al., “A Review of Vibration Detection Methods
Using Accelerometer Sensors for Water Pipeline Leakage,” IEEE
Access, vol. 7, pp. 51965–51981, 2019, DOI:
10.1109/ACCESS.2019.2896302.
[24] M. Varanis, A. Silva, A. Mereles, and R. Pederiva, “MEMS
accelerometers for mechanical vibrations analysis: a comprehensive
review with applications,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40,
no. 11, p. 527, 2018, DOI: 10.1007/s40430-018-1445-5.
[25] Y.-S. Lu, H.-W. Wang, and S.-H. Liu, “An integrated accelerometer
for dynamic motion systems,” Measurement, vol. 125, pp. 471–475,
2018, DOI: https://doi.org/10.1016/j.measurement.2018.05.019.
[26] M. S. Harb and F.-G. Yuan, “Damage imaging using non-contact air-
coupled transducer/laser Doppler vibrometer system,” Struct. Heal.
Monit., vol. 15, no. 2, pp. 193–203, Mar. 2016, DOI:
10.1177/1475921716636336.
[27] W. Zuo, Z. Hu, Z. An, and Y. Kong, “LDV-based measurement of
2D dynamic stress fields in transparent solids,” J. Sound Vib., vol.
476, p. 115288, 2020, DOI:
https://doi.org/10.1016/j.jsv.2020.115288.
[28] A. U. Dilek, A. D. Oguz, F. Satis, Y. D. Gokdel, and M. Ozbek,
“Condition monitoring of wind turbine blades and tower via an
automated laser scanning system,” Eng. Struct., vol. 189, pp. 25–34,
2019, DOI: https://doi.org/10.1016/j.engstruct.2019.03.065.
[29] S. J. Rothberg et al., “An international review of laser Doppler
vibrometry: Making light work of vibration measurement,” Opt.
Lasers Eng., vol. 99, pp. 11–22, 2017, DOI:
https://doi.org/10.1016/j.optlaseng.2016.10.023.
[30] D. Rojas and J. Barrett, “A hardware-software WSN platform for
machine and structural monitoring,” in 2017 28th Irish Signals and
Systems Conference (ISSC), 2017, pp. 1–6, DOI:
10.1109/ISSC.2017.7983626.
[31] G. Kousiopoulos, G. Papastavrou, N. Karagiorgos, S. Nikolaidis, and
D. Porlidas, “Pipeline Leak Detection in Noisy Environment,” in
2019 8th International Conference on Modern Circuits and Systems
Technologies (MOCAST), 2019, pp. 1–5, DOI:
10.1109/MOCAST.2019.8741673.
[32] K. Wang et al., “Vibration and acoustic signal characteristics of solid
particles carried in sand-water two-phase flows,” Powder Technol.,
vol. 345, pp. 159–168, 2019, DOI:
https://DOI.org/10.1016/j.powtec.2018.12.092.
[33] N. Dey, A. S. Ashour, W. S. Mohamed, and N. G. Nguyen, “Acoustic
Wave Technology,” in Acoustic Sensors for Biomedical
Applications., Cham: Springer, 2019, pp. 21–31.
[34] L. Hu, Y. Chen, S. Wang, and L. Jia, “A Nonintrusive and Single-
Point Infrastructure-Mediated Sensing Approach for Water-Use
Activity Recognition,” in 2013 IEEE 10th International Conference
on High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing,
2013, pp. 2120–2126, DOI: 10.1109/HPCC.and.EUC.2013.304.
[35] F. A. A. Souza, R. Araújo, and J. Mendes, “Review of soft sensor
methods for regression applications,” Chemom. Intell. Lab. Syst., vol.
152, no. 2016, pp. 69–79, 2016, DOI:
10.1016/j.chemolab.2015.12.011.
[36] L. Fortuna, S. Graziani, and M. G. Xibilia, “Comparison of Soft-
Sensor Design Methods for Industrial Plants Using Small Data Sets,”
IEEE Trans. Instrum. Meas., vol. 58, no. 8, pp. 2444–2451, 2009,
DOI: 10.1109/TIM.2009.2016386.
[37] D. Slišković, R. Grbić, and Ž. Hocenski, “Methods for Plant Data-
Based Process Modeling in Soft-Sensor Development,” Automatika,
vol. 52, no. 4, pp. 306–318, 2011, DOI:
10.1080/00051144.2011.11828430.
[38] S. A. Lynn, J. Ringwood, and N. MacGearailt, “Global and Local
Virtual Metrology Models for a Plasma Etch Process,” IEEE Trans.
Semicond. Manuf., vol. 25, no. 1, pp. 94–103, 2012, DOI:
10.1109/TSM.2011.2176759.
[39] T. C. B. de Morais, D. R. Rodrigues, U. T. de C. P. Souto, and S. G.
Lemos, “A simple voltammetric electronic tongue for the analysis of
coffee adulterations,” Food Chem., vol. 273, no. 2019, pp. 31–38,
2019, DOI: 10.1016/j.foodchem.2018.04.136.
[40] J. Wan, S. Pampuri, P. G. O’Hara, A. B. Johnston, and S. McLoone,
“On Regression Methods for Virtual Metrology in Semiconductor
Manufacturing,” in 25th IET Irish Signals & Systems Conference
2014 and 2014 China-Ireland International Conference on
Information and Communities Technologies (ISSC 2014/CIICT
2014), 2014, pp. 380–385, DOI: 10.1049/cp.2014.0718.
[41] S. Lynn, J. Ringwood, E. Ragnoli, S. McLoone, and N. MacGearailty,
“Virtual metrology for plasma etch using tool variables,” in 2009
IEEE/SEMI Advanced Semiconductor Manufacturing Conference,
2009, pp. 143–148, DOI: 10.1109/ASMC.2009.5155972.
[42] B. Lin, B. Recke, J. K. H. Knudsen, and S. B. Jørgensen, “A
systematic approach for soft sensor development,” Comput. Chem.
Eng., vol. 31, no. 5–6, pp. 419–425, 2007, DOI:
10.1016/j.compchemeng.2006.05.030.
[43] A. A. Khan, J. R. Moyne, and D. M. Tilbury, “Virtual metrology and
feedback control for semiconductor manufacturing processes using
recursive partial least squares,” J. Process Control, vol. 18, no. 10,
pp. 961–974, 2008, DOI: 10.1016/j.jprocont.2008.04.014.
[44] D. Wang, L. Jun, and R. Srinivasan, “Data-Driven Soft Sensor
Approach for Quality Prediction in a Refining Process,” IEEE Trans.
Ind. Informatics, vol. 6, no. 1, pp. 11–17, Feb. 2010, DOI:
10.1109/TII.2009.2025124.
[45] Z. Ge and Z. Song, “A comparative study of just-in-time-learning