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 Abstract— Entropy measurements are an accessible tool to 

perform irregularity and uncertainty measurements present in 

time series. In signal processing, the Multiscale Permutation 

Entropy is recently presented as a methodology of 

characterization capable of measuring randomness and non-

linear dynamics existing in non-stationary time series, such as 

mechanical vibration signals. In this article, the Multiscale 

Permutation Entropy is combined with diverse feature selection 

techniques and multiple classifiers based on machine learning 

aiming to detect different operative states in an internal 

combustion engine. The best combination is selected from the 

evaluation of parameters like precision and computational time. 

Finally, the proposed methodology is established as an effective 

tool to diagnose failures in bearing systems with a high precision 

rate and a reduced calculation time. 
 

Index Terms— Dynamics, Entropy, Machine, Multiescale, 

Permutation, Vibration.  

 
 Resumen— Las mediciones de entropía son una herramienta 

accesible para realizar mediciones de irregularidades e 

incertidumbres presentes en series de tiempo. En el 

procesamiento de señales, la Entropía de Permutación 

Multiescalar se presenta recientemente como una metodología de 

caracterización capaz de medir la aleatoriedad y la dinámica no 

lineal existente en series de tiempo no estacionarias, como las 

señales de vibración mecánica. En este artículo, la entropía de 

permutación multiescalar se combina con diversas técnicas de 

selección de características y múltiples clasificadores basados en 

el aprendizaje automático con el objetivo de detectar diferentes 

estados operativos en un motor de combustión interna. La mejor 

combinación se selecciona a partir de la evaluación de  

 
This manuscript was sent on October 30, 2020 and accepted on November 

20, 2021.  

J. C. Mejía is with the Mechanical Engineering Faculty, Universidad 
Tecnológica de Pereira, Pereira, Carrera 27 #10-02, PO 660003 Colombia (e-

mail: j.mejia1@utp.edu.co). 

J. D. Echeverry-Correa, is associate profesor in the Electrical Engineering 
Program in Universidad Tecnológica de Pereira, Pereira, Carrera 27 #10-02, 

PO 660003 Colombia (e-mail: jde@utp.edu.co). 

H. F. Quintero is with the Mechanical Engineering Faculty, Universidad 
Tecnológica de Pereira, Pereira, Carrera 27 #10-02, PO 660003 Colombia (e-

mail: hquinte@utp.edu.co). 

 

parámetros como precisión y tiempo computacional. Finalmente, 

la metodología propuesta se establece como una herramienta 

eficaz para diagnosticar fallas en sistemas de rodamientos con 

una alta tasa de precisión y un tiempo de cálculo reducido. 

 

Palabras claves—Dinámica, Entropía, Máquina, Multiescalar, 

Permutación, Vibración. 

  

I. INTRODUCTION 

EARING systems play an important role in rotary machines 

and in the modern manufacturing industry.  

Different methodologies have been developed for the 

detection and diagnosis of faults in its main components [1]. 

Generally, these diagnoses are made from the capture and 

processing of vibration signals, since they contain relevant 

information about the state of the machine [2]. However, these 

signals have a large number of non-stationary and non-linear 

characteristics, since their capture inevitably takes place with 

friction and impacts. To overcome this problem, a series of 

techniques have been developed for processing and classifying 

these signals. A widely used approach is based on the analysis 

of temporal and spectral characteristics of vibration signals [3] 

[4]. However, analysis in time, frequency and time-frequency 

domains are seriously affected by the signal length and 

sampling frequency of the capture [5]. To solve this problem 

another approach has been presented in recent years, which is 

based on entropy of different natures, such as Simple Entropy 

(ApEn) [6], Approximate Entropy (SampEn) [7], Multiscale 

Entropy (MSE) [8], Permutation Entropy (PE) [9][31] and 

Multiscale Permutation Entropy (MPE) [10]. All of the above 

mentioned have been used successfully for the 

characterization of signals of different nature. For instance, in 

[6] the ApEn is used for diagnosis and clinical monitoring in 

the area of physiology. In [11] PE is used for the classification 

of patients from EEG signals. Finally, in [1] [8][32] is used the 

MPE and MSE for the identification and diagnosis of faults in 

bearing systems based on vibration signals. It should be noted 

that the MPE is an evolution of the MSE and the PE since it 
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gives a much more complete measure of the nonlinear 

dynamic parameters of a system. MPE includes a combination 

of different scales and time delays, which identifies 

particularities that are not perceptible within other entropies 

[10][33]. All the previous methods of characterization allow to 

obtain a great quantity of information of the system that is 

being analyzed. When classifying, many of these 

characteristics can be redundant or irrelevant, which can create 

redundancy or over-training of the classifier, for which 

characteristics selection techniques are implemented, 

improving the quality and efficiency of the model. In the 

bearing fault diagnosis application, Variance based on 

Relevance Analysis (VRA) [1], Laplacian Score (LS) [12] and 

Relief (REL) [5] are normally used. After the selection of 

features, a classification process is performed with machine 

learning algorithms such as Multiple Vector Support Machines 

(SVMM) [1], [13], [14] and [15], Hidden Markov Models 

(HMM) [16] and Artificial Neural Networks (ANN) [17], [18] 

and [19]. However, these classifiers have a high degree of 

complexity, computation time and initial parameters that must 

be optimized. Few works have attempted to exploit the 

potential of less complex conventional classifiers, such as 

Nearest K-Neighbors (KNN) [20], [21], Decision Trees 

(TREE) [22] or Naive Bayes (BAYES) [21]. This paper 

proposes a methodology for the diagnosis of bearing failures 

based on characteristics of the MPE. To make it more efficient 

and effective, it is combined with some feature selection 

techniques and multiple supervised classifiers. The verification 

of the advantage of the chosen parameters is done by 

comparison with different ones used in the state of the art.  

The rest of the article is organized as follows: In section 

II.A is presented the mathematical formulation of the MPE 

and in section II.B is detailed the different feature selection 

techniques used. In section II.C the classifier used in the state 

of the art are exposed. Then, a novel methodology for the 

diagnosis of bearing failures based on MPE, feature selection 

techniques and supervised classifier is located in the section 

III. Finally, results are presented in section IV and the 

conclusions of this approach in section V. 

II. METHODOLOGY 

The proposed methodology combines a characterization 

method, a feature selection technique and a supervised 

classifier as show in Fig. 1. Each part of the methodology is 

described in the following sections. The proposed 

methodology begins with the characterization of vibration 

signals, then using an automatic classifier combined with a 

characteristic selection technique, the state of the system is 

estimated. 

 

Fig 1. Methodology for vibration classification 

 

A. Multiscale Permutation Entropy and Acronyms 

Multiscale Permutation Entropy (MPE) is used in this paper 

as a signal characterization method, since it is a measure that 

allows to detect dynamic changes in the time series. It is based 

on the comparison in neighboring values without taking into 

account the size of the values and, therefore, has a calculation 

simple and fast [23]. The above, allows to position the MPE as 

a particularly useful and robust tool in the presence of 

dynamic noise [1]. In order to describe the MPE measure, it is 

important to review the entropy proposed by Shannon [14], 

described as follows: Considering a time series 
 T
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space of representation of characteristics, where T is the length 
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Where the judgment type denotes the map from pattern 
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space to symbol space. Also, 1A(u) = 1 if u ∈ and 1A(u) = 0 if u 

 A. The MPE can take values between the ranges [0, ln(m!)] 

and it is invariant under nonlinear monotonic transformations. 

The values of m and τ vary from 1 to 8 and the values, which 

are values used for calculating MSE [8] and PE [9]. In Fig 2 is 

plotted the behavior of the MPE, when are varying m and τ for 

a vibration signal. 

 
Fig 2. MPE varying m and τ 

When choosing the delay and dimension parameters, the 

nature of the signals must be taken into account. If the 

parameters are too small, the nonlinear dynamic of the 

characteristics from signals will not be analyzed effectively. If 

the parameters are too large, useful information will be deleted 

in consequence, which will result in a wicked analysis. 

B. Featured Selection Technique 

For the comparison of the characteristic selection technique, 

the ones most used in the literature were implemented. 

• Relief (REL). Unsupervised method to generate a ranking 

based on the predictors give neighbors of the same class 

or different class. 

• Laplacian Score (LS). Unsupervised method to generate 

a ranking based on the input characteristics based on a 

variability criterion [1]. 

• Variance-based Relevance Analysis (VRA). 

Unsupervised method, it generates a ranking with the 

input features based on a variability criterion [12]. 

• Non-negative matrix factorization (NF). Unsupervised 

method to analyze the relevance of the characteristics 

from a reduction in dimensionality by non-negative 

factorization techniques [20]. 

• Self-Weight Ranking (SW). Unsupervised method, 

technique, it codes the feature relevance in terms of a self-

similarity measures [5]. 

• Distance-Weight Ranking (DW). Supervised method, 

this technique quantifies the relevance of the distance 

between samples from different clusters by using 

supervised information. 

C. Supervised Classifiers 

Characteristic selection techniques are combined with 

different supervised classifiers to find the best combination 

that suits the nature of the signal. 

• K-Nearest Neighbors (KNN). Supervised and non-

parametric classification method that estimates the 

posterior probability that an element belongs to the class 

from a set of information provided [24]. 

• Decision Trees (TREE). Supervised classifier based on 

prediction systems based on rules, which serve to 

represent and categorize a series of conditions that occur 

successively, for the resolution of a problem [22]. 

• Naive bayes (BAYES). Supervised classifier for 

multiclass learning. This classifier is based on estimation 

of prediction and re-substitution [21]. 

• Multiple Support Vector Machines (SVMM). 

Supervised classifier based on a hyperplane or set of 

hyperplanes in a space of very high (or even infinite) 

dimensionality that can be used in problems of 

classification or regression [1], [13], [15] and [14]. 

III. EXPERIMENTAL DATA 

The validation of the proposed methodology is carried out 

by evaluation performed when classifying bearing fault signals 

obtained from the Case Western Reserve database [25]. In this 

database, signals were collected for the normal bearings (Nor), 

faults in the internal train (IR1), external train (IR2) and ball 

(BE). Faults are also found in order of severity, 0.007 inches 

in diameter to 0.040 inches in diameter and at variable engine 

speeds of 1720 to 1797 RPM. Each experiment was repeated 

three times and the data was collected at 12 kHz for 5 seconds. 

Each signal was divided into 10 sub-signals in order to have 

more samples per class and imitating the experimental 

framework established in the literature [26]. A sub-signal of 

each of the faults can be seen in Fig.3. 

 
Fig 3. Vibration signals for different states 

 

The signals are characterized with the MPE and then 

dividing it into training and testing. A feature selection 

technique is applied to the training group to obtain a ranking 

of relevance and it is applied to the test group. Then, with the 

reorganized training group, a classifier is trained and the test 

group is evaluated. The evaluation process is explained in Fig. 

4. 
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Fig 4. Methodology proposed for the detection of faults in bearings 

systems 

IV. RESULTS AND DISCUSSION 

This paper exposes a methodology for classify bearing fault 

in vibration signal. The classification carried out through a 

cross validation of (k = 5) and repeated by changing the 

number of training characteristics. After the validation, the 

best results were chosen through the shortest distance to the 

ideal point [100% (Acc); 0 (Std); 0 (Ca)], where Acc is the 

accuracy, Std is the standard deviation of the accuracy of the 

cross validation and Ca is the number of characteristics. In 

tables II and II is exposed the accuracy with a 95% confidence 

interval for the combinations of classifiers and feature 

selection techniques for 4 (Nor, IR1, IR2 and BE) and 10 

(Nor, IR1, IR2 and BE, combined with different speeds) 

classes are appreciated. 

 

 

 

 

 
TABLE I. 

 ACCURACY OF THE CLASSIFICATION OF 4 CLASSES 

 Bayes KNN SVMM Tree 

- 72.08±2.53 97.5±0.88 89.75±1.71 92.91±1.45 

VRA 96.75±1.01 99.5±0.39 99.08±0.54 98.16±0.76 

REL 89.56±1.73 99.92±0.16 97.58±0.86 97.75±0.83 

LS 88.16±1.82 99.01±0.56 90.41±1.66 95.41±1.18 

NF 79.08±2.31 99.25±0.48 92.16±1.52 94.66±1.27 

DW 81.33±2.21 99.16±0.51 92.83±1.45 96.83±0.99 

SW 81.25±2.21 97.75±0.83 95.51±1.17 96.38±1.05 

 

 

TABLE II.  

ACCURACY OF THE CLASSIFICATION OF 10 CLASSES 

 Bayes KNN SVMM Tree 

- 88.42±2.27 97.91±1.18 86.52±1.81 97.17±2.26 

VRA 96.41±1.67 99.68±0.81 99.59±0.79 98.25±1.32 

REL 97.51±1.04 99.75±0.21 94.83±2.71 96.25±1.63 

LS 96.01±2.79 98.25±0.76 93.92±2.75 94.92±3.05 

NF 94.51±2.67 96.75±0.55 92.01±3.85 92.17±1.81 

DW 94.83±1.95 98.08±1.41 93.58±2.32 94.25±1.27 

SW 81.75±2.76 97.75±1.03 93.51±1.95 93.91±1.46 

 

The best results are obtained with the KNN classifier, 

regardless of the feature selection technique. Specifically, the 

best accuracy was obtained with the KNN classifier combined 

with the Relief feature selection technique. The quantity of 

characteristics used for the classification were 9 and 10 for 4 

and 10 classes respectively. It should be noted that the results 

are obtained thanks to the characterization made with the 

MPE, which achieves a high level of separability of the classes 

that allows the classifiers to adapt and solve the proposed 

application. Finally, a summary of the best classifications can 

be seen in the table III. 

 
 

TABLE III.  

COMPARISON OF THE BEST CLASSIFICATION RESULTS. 

Author Number 

Classes 

Character. Feat. 

Sel. 

Classifier Number 

Features 

Acc.% 

Zhang et al.[14] 3 PE+EMD - SVM 12 97.75 

Yuwono et al.[17] 3 WPT - HMM 12 95.8 

Ben et al.[19] 7 TP+FR+EMD - ANN 10 93 

Zhu et al.[28] 10 HE+SE+MSE - SVM+PSO 9 97.75 

Han et al.[16] 14 SE+LDM - SVM - 100 

Zheng et al.[15] 7 EF - ANFIS 4 99.29 

Liu et al.[29] 4 TP-FR - WPT+SVM+PSO 81 97.5 

Tiwari et al.[2] 4 MPE - ANFC 16 02.15 

William et al.[20] 4 ZC - ANN 10 97.13 

Ocak et al.[30] 3 LPM - HMM 30 99.6 

Wei et al.[5] 6 FR+WPT Relief AP 18 96 

Shao et al.[31] 16 DAE+CAE LPP Softmax 19 96 

Zheng et al.[1] 6 GCMPE LS SVM+PSO 2 98.81 

Liang et al.[21] 4 TP+FR NMF KNN 3 92.86 

Muru et al.[18] 4 SSA EMD ANN 10 95.14 

This work 4 MPE REL KNN 9 99.72 

This work 10 MPE REL KNN 10 99.55 
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The proposed experimental methodology achieved a mean 

accuracy of 99.72% for classification of 4 different bearing 

system failures. Table IV shows the confusion matrix for this 

classifier. 

 
TABLE IV.  

CONFUCTION MATRIX OF THE BEST RANKING. 

 Classified 

  Nor IR1 IR2 BE 

 

 

Labeled 

Nor 28 0 0 0 

IR1 0 70 1 0 

IR2 0 0 70 0 

BE 0 0 0 71 

 

The proposed methodology is capable of classifying the 

failures with a high success rate, to the point that only one 

sample avoided obtaining 100% accuracy. The effectiveness 

of the methodology can be seen with also achieved a mean 

accuracy of 99.55% for the classification of 10 different 

bearing system failures.  

V. CONCLUSIONS 

This article presents a methodology for the diagnosis of 

bearing failures based on the Multiscalar Permutation Entropy 

(MPE) technique. The MPE proves to be a highly effective 

characterization methodology to find information that allows 

to separate classes. Specifically, in the mechanical vibration 

signals that have a high non-stationary, the MPE manages to 

find characteristics that would not be detected by other 

methodologies. The MPE measures the non-linear dynamics 

existing in non-stationary time series and when combined with 

Relieff as a feature selection technique, a robust tool for 

classification applications is obtained. For the classification a 

method of K-Neighbors Nearest (KNN) was used, which 

manages to adapt to the nature of the characteristics. The 

results confirm a classification accuracy of more than 99:9% 

with a computation time of 16:37 seconds, which exceeds the 

results established in the literature.  
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