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Abstract— The present work presents the results of 

research elaborated to recognize two classes of leaves of 

weed present in the coffee crops through machine learning 

techniques, a topic few have explored in the coffee 

agroindustry, and that can significantly impact the 

management of herbicides in this important crop. The study 

involved twenty-four experiments, utilizing a database of 

210 images, 70 for each weed class and 70 for coffee leaf 

samples. All images were processed and transformed into 

HSV color format. From each image, 33 texture patterns 

were extracted and reduced to four through principal 

component analysis. The fractal dimension was added as a 

fifth pattern. The recognition used three machine learning 

techniques: support vector machine (SVM), k-near 

neighbors (KNN), and artificial neuronal networks. The 

machine learning techniques permitted classification with 

precision and recall upper or equal to 95%, on average, 

when the fractal dimension was not used and upper or equal 

to 97% on average when the fractal dimension was used. 

SVM and ANN were methods with better outcomes. These 

experiments constitute a first step towards implementing an 

automatic system for selective weed eradication in a coffee 

crop, with promising implications for future developments. 
 

Index Terms—Coffee Crop; Machine Learning; Texture 

Analysis; Weed Recognition. 

 

Resumen— El presente trabajo presenta los resultados de 

una investigación elaborada para reconocer dos clases de 

hojas de maleza presentes en los cultivos de café mediante 

técnicas de aprendizaje automático, un tema poco 

explorado en la agroindustria cafetalera, y que puede 

impactar significativamente el manejo de herbicidas en este 

importante cultivo. El estudio involucró veinticuatro 

experimentos, utilizando una base de datos de 210 

imágenes, 70 para cada clase de maleza y 70 para muestras 

de hojas de café. Todas las imágenes se procesaron y 

transformaron en formato de color HSV. De cada imagen 

se extrajeron 33 patrones de textura, que se redujeron a 

cuatro mediante un análisis de componentes principales.  
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La dimensión fractal se añadió como quinto patrón. Para el 

reconocimiento se utilizaron tres técnicas de aprendizaje 

automático: máquina de soporte vectorial (SVM), k-vecinos 

más cercanos (KNN) y redes neuronales artificiales. Las 

técnicas de aprendizaje automático permitieron la 

clasificación con una precisión y exhaustividad superiores o 

iguales al 95% en promedio, cuando no se utilizó la 

dimensión fractal, y superiores o iguales al 97%, en 

promedio, cuando se utilizó la dimensión fractal. SVM y 

ANN fueron los métodos con mejores resultados. Estos 

experimentos constituyen un primer paso hacia la 

implementación de un sistema automático para la 

erradicación selectiva de malezas en un cultivo de café, con 

implicaciones prometedoras para desarrollos futuro. 
 

 Palabras claves— Análisis de Textura; Aprendizaje Automático. 

Cultivo de Café; Reconocimiento de Malezas. 

I. INTRODUCTION 

EED control is crucial to ensure adequate growth and crop 

performance.  Indeed, weeds compete with crops for 

water, nutrients, light, CO2, and space [1], with a special 

affectation in the first plant years [2].  For coffee, one of the 

most representative Colombian crops, this control must be 

realized regularly throughout the year and imply considerable 

spending of time and money. Anzalone and Silva ([3]) estimate 

this spending to be around 35% when nothing is done and 

between 16% and 27% when partial control is realized. The 

conventional form of address weed eradication involves 

applying chemically prepared herbicides for this purpose [4]. 

However, the regular or indiscriminate use of herbicides can 

lead to severe environmental affectation, health problems, and 

resistance of weeds to its application ([5], [6], [7], [8]). This 

forces, in many cases, to alternate the use of glyphosate, which 

is perhaps the most common herbicide used in coffee farms, 

with other chemical herbicides ([9], [10], [11], [12], [13]).  

Some possible secondary effects on the environment and 

health are erosion, ground degradation, crop contamination, 

water contamination, fauna, and human habitat contamination, 

among others [14]. Roundup, for example, a widely used 

herbicide in Colombia that contains glyphosate and 

polyoxyethylene amine surfactant (POEA), is mentioned in 

[15] as an herbicide capable of altering the hormonal balance of 

the organisms that are exposed to it; its use is related to cases of 

cancer and births with malformations. The affectation of flora 

in coffee crops by herbicides is commentated by [16]. Damages 

to earthworm biomasses, coleopterous, beneficial fungi, or 
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edaphic mites are researched in [17], [18], [19], [20], [21], [22], 

[23], [24]. Herbicides can even alter coffee crops themselves 

[25], [26], [27].  

The previous considerations show that the selective 

application of herbicides or alternative methods for weed 

eradication is fundamental. In both cases, the use of technology 

for the automatic recognition of weeds is essential. Many works 

have been developed for this purpose using different 

techniques, like edge detection [28], image filtering [29], 

hyperspectral sensing [30], crop signaling (making crops 

distinguishable from weeds) [31], deep learning ([32], [33], 

[34], [35], [36]), between others. Some research experiments 

with systems for weed recognition in real-time [37], [38], too. 

However, despite these works, there is no specific research 

addressing the recognition of weeds in coffee crops.  

The present paper summarized a series of experiments 

tending toward recognizing images of two common weeds of 

coffee crops, Sida Acuta and Paspalum Macrophyllum. Patterns 

for recognition were obtained based on texture analysis, an 

advantageous technique for leaf or fruit recognition ([39], [40]). 

Three machine learning techniques were implemented: support 

vector machine, SVM, k-near neighbors, KNN, and artificial 

neuronal network, ANN, making use of Matlab 2022b®, with 

the corresponding functions for these machine learning tools, 

updated by the manufacturer for that version. Despite the 

existence of more current and robust algorithms and 

implementation tools, KNN, SVM, and ANNs remain highly 

relevant and widely used in various applications ([41], [42], 

[43], [44], [45]). Their enduring relevance is due to their status 

as widely studied algorithms that are relatively easy to 

understand and interpret. This makes them particularly suitable 

for exploratory projects and with a reduced data set, such as the 

one used in the present research. 

The work constitutes a first approximation to the 

implementation of an automatic system for selective weed 

eradication. The paper is organized into four sections: 

introduction, methodology, result analysis, and conclusion.  

II. METHODOLOGY 

Two hundred and ten samples of coffee plants and weed 

leaves were recollected in an aleatory form from an area of 0.1 

km2, in a coffee crop Castilla variety, in the farm San Carlos 

from San Gil municipality, at the south of Santander, Colombia. 

The samples were preserved by placing them into newspaper 

sheets smeared with alcohol and transported to a laboratory 

temperature-controlled at 20°C.  Seventy leaves corresponded 

to coffee plants, seventy to leaves of Sida Acuta weed, and 

seventy to Paspalum Macrophyllum weed.    

Each leaf was photographed with a digital camera in a light 

cube, obtaining 210 RGB images of approximately 4608 by 

3456 pixels, with 24 bits of profundity. This size was adequate 

for image processing. Experiments with different image sizes 

are beyond the scope set for investigation and may be the 

subject of study in future work.  The images were processed to 

eliminate all that was not part of the leaf, resulting in images 

like those shown in Fig. 1. Afterward, the processed RGB 

images were transformed into HSI color format (hue, 

saturation, intensity) through (1) to (3). 
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Fig. 1.  Coffee and Weeds Leaves Images 

Subsequently, from hue, saturation, and intensity 

components, three co-occurrence matrixes (one for hue, the 

other for saturation, and the other for intensity) were calculated, 

according to (4).  Eleven texture patterns were established from 

each co-occurrence matrix according to (5) to (15).    
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Meddle Intensity 
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Information Correlation 1 
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Information Correlation 2 
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Contrast 
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Mode 
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Where p is the normalized co-occurrence matrix, px is the 

vector of the sum of columns of p, and py is the vector of the 

sum of rows of p. Values px+y, px-y, HX, HXY1 y HXY2, were 

found conforming (16) to (20). 
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for k = 0,1,2… .2(𝑁𝑔 − 1)                                         (16) 
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   Next, a principal component analysis (PCA) was applied to 

each group of patterns, including the group comprised of a mix 

of all. The number of the first components selected (four) was 

determined in a heuristic form. Consequently, for everyone, the 

leaf was defined as four groups of patterns (H, S, I, and HSI), 

with four patterns each.   

Additionally, the fractal dimension of each image was 

determined, subdividing the binarized image of each leaf in 

boxes of increasing size, ri. The fractal dimension value was 

obtained employing (21), where n is a vector in which each 

element represents the number of boxes of dimension ri that 

contain white color, and N is the length of the vector.  

 

𝑑𝑓 =  
∑
∆𝑛𝑖
∆𝑟𝑖

𝑖

𝑁
          (21) 

 

Three classifiers were used: quadratic support vector 

machine (SVM), K nearest neighbors (KNN), and an artificial 

neuronal network (ANN). SVM and KNN ran with a cross-

validation strategy and seven folds. SVM used a radial basis 
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function as kernel, with box constraint and kernel scale of 1. 

KNN used the five nearest neighbors classifier and the 

Minkowski metric. ANN structure had two layers: the first with 

neurons with sigmoid functions and the hidden layer with 

softmax functions.  Neurons in the hidden layer were five when 

the number of inputs (patterns) was four and seven when the 

number of inputs was five (with fractal dimension used as the 

fifth pattern). All parameters of classifiers were adjusted in a 

heuristic form.  

ANN was trained with a scaled conjugate gradient 

backpropagation algorithm. 70% of samples (147) were used 

for training, 10% (21 samples) for validation, and 20% (42 

samples) for testing.  

With each classifier, eight essays were done, four without 

fractal dimension (one for H patterns, another for S patterns, 

another for I patterns, and another for HSI patterns), and four 

adding the fractal dimension to each group of patterns. In total, 

24 experiments were carried out. All codes and machine 

learning tools were implemented in Matlab 2022b® in a 

computer with an Intel Core i5 processor and 12GB of DDR4 

memory.  

III. RESULTS 

For each experiment, the evaluation parameters described in 

Table I were calculated. These are the same components of 

matrix confusion but are presented in a table because, in this 

form, it is easier to compare the results of the three systems 

tested (SVM, KNN, and ANN). The total number of samples 

determined the percentage of true or false positives. Thus, for 

example, if the total true positives of coffee samples in SVM 

classifications was 68, the percentage reported is 32.4% (that 

corresponds to 68/210).  Precision and Recall were estimated 

according to (22) and (23), respectively, where TP is the total 

of true positives, FP is the total of false positives, and FN is the 

total of false negatives.  

 

𝑃𝑟𝑒𝑐 =
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          (22) 
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          (23) 

 

Precision indicates what percentage of the samples of the 

systems identified as a positive class are true positives. 

Precision is, therefore, a quality parameter. Recall indicates 

what percentage of positive classes the systems could identify. 

 

 

 

 

 

 

 

 

 

 

 

TABLE I 
EVALUATION PARAMETERS  

True Positives of Coffee TPC 

False Positives of Coffee by Weed One/False 

Negatives of Weeds One by Coffee 

FPC_W1 

False Positives of Coffee by Weed Two/False 

Negatives of Weed Two by Coffee 

FPC_W2 

True Positives of Weed One TPW1 

False Positives of Weed One by Coffee/False 

Negative of Coffee by Weed One 

FPW1_C 

False Positives of Weed One by Weed Two/False 

Negative of Weed Two by Weed One 

FPW1_W2 

True Positives of Weed Two TPW2 

False Positives of Weed Two by Coffee/False 

Negatives of Coffee by Weed Two 

FPW2_C 

False Positives of Weed 2 by Weed One/False 

Negatives of Weed One by Weed Two 

FPW2_W1 

Coffee Precision Prec_C 

Weed One Precision Prec_W1 

Weed Two Precision Prec_W2 

Coffee Recall Rec_C 

Weed One Recall Rec_W1 

Weed Two Recall Rec_W2 

  

  The following tables (Table I to IX) synthesize the results 

of the twenty-four experiments. The SVM column is the result 

of the quadratic Support Machine Vector classifier, the KNN 

column is the result of the fine K-Near Neighbors classifier, and 

NNTr, NNV, and NNTe columns are the results of the training, 

validating, and testing Neuronal Network classifier, 

respectively.  

 
TABLE II 

EVALUATION PARAMETERS FOR HUE (H) TEXTURE PATTERNS   
SVM KNN NNTr NNV NNTe 

TPC 
31.9% 31.0% 33.3% 19.0% 38.1% 

FPC_W1 
0.5% 1.4% 0.7% 0.0% 0.0% 

FPC_W2 
1.0% 1.0% 0.0% 0,0% 0.0% 

TPW1 
31.0% 31.4% 30.6% 42.9% 33.3% 

FPW1_C 
1.0% 0.5% 0.0% 4.8% 0.0% 

FPW1_W2 
1.4% 1.4% 0.7% 0.0% 0.0% 

TPW2 
32.4% 32.4% 34.0% 33.3% 28.6% 

FPW2_C 
0.5% 0.5% 0.0% 0.0% 0.0% 

FPW2_W1 
0.5% 0.5% 0.7% 0.0% 0.0% 

Prec_C 
95.7% 92.9% 98.0% 100.0% 100.0% 

Prec_W1 
92.9% 94.3% 97.8% 90.0% 100.0% 

Prec_W2 
97.1% 97.1% 98.0% 100.0% 100.0% 

Rec_C 
95.7% 97.0% 100.0% 80.0% 100.0% 

Rec_W1 
97.0% 94.3% 95.7% 100.0% 100.0% 

Rec_W2 
93.2% 93.2% 98.0% 100.0% 100.0% 

 

For hue texture parameters, the three systems had results of 

Precision and Recall up to 92%, being the best ANN.  
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TABLE III 
EVALUATION PARAMETERS FOR SATURATION (S) TEXTURE PATTERNS   

SVM KNN NNTr NNV NNTe 

TPC 30.0% 25.7% 25.9% 14.3% 19.0% 

FPC_W1 0.0% 0.5% 0.0% 0.0% 2.4% 

FPC_W2 3.3% 7.1% 23.1% 23.8% 31.0% 

TPW1 32.4% 31.9% 32.7% 23.8% 35.7% 

FPW1_C 0.5% 1.4% 0.7% 4.8% 0.0% 

FPW1_W2 0.5% 0.0% 0.7% 0.0% 0.0% 

TPW2 32.9% 29.0% 9.5% 9.5% 2.4% 

FPW2_C 0.5% 4.3% 7.5% 19.0% 9.5% 

FPW2_W1 0.0% 0.0% 0.0% 4.8% 0.0% 

Prec_C 90.0% 77.1% 52.8% 37.5% 36.4% 

Prec_W1 97.1% 95.7% 96.0% 83.3% 100.0% 

Prec_W2 98.6% 87.1% 56.0% 28.6% 20.0% 

Rec_C 96.9% 81.8% 76.0% 37.5% 66.7% 

Rec_W1 100.0% 98.5% 100.0% 83.3% 93.8% 

Rec_W2 89.6% 80.3% 28.6% 28.6% 7.1% 

 

In the case of saturation parameters, the performance was 

lower than the results of hue parameters. For example, leaves 

of coffee and weed number 2 were not recognized. The best 

results were for the SVM system. 

 
TABLE IV 

EVALUATION  PARAMETERS FOR INTENSITY (I) TEXTURE PATTERNS   
SVM KNN NNTr NNV NNTe 

TPC 
32.4% 31.9% 32.0% 38.1% 31.0% 

FPC_W1 
0.0% 0.0% 0.0% 0.0% 0.0% 

FPC_W2 
1.0% 1.4% 0.0% 0.0% 0.0% 

TPW1 
32.4% 30.0% 22.4% 28.6% 26.2% 

FPW1_C 
0.0% 0.0% 0.0% 0.0% 2.4% 

FPW1_W2 
1.0% 3.3% 4.8% 4.8% 7.1% 

TPW2 
31.9% 28.6% 29.9% 23.8% 23.8% 

FPW2_C 
0.5% 1.0% 0.7% 0.0% 0.0% 

FPW2_W1 
1.0% 3.8% 10.2% 4.8% 9.5% 

Prec_C 
97.1% 95.7% 100.0% 100.0% 100.0% 

Prec_W1 
97.1% 90.0% 82.5% 85.7% 73.3% 

Prec_W2 
95.7% 85.7% 73.3% 83.3% 71.4% 

Rec_C 
98.6% 97.1% 97.9% 100.0% 92.9% 

Rec_W1 
97.1% 88.7% 68.8% 85.7% 73.3% 

Rec_W2 
94.4% 85.7% 86.3% 83.3% 76.9% 

 

For intensity parameters, the results were better than those of 

saturation parameters, globally. Better results were obtained 

with the SVM method, with Precision and Recall up to 94%. 

 

 

 

TABLE V 
EVALUATION  PARAMETERS FOR HSI TEXTURE PATTERNS   

SVM KNN NNTr NNV NNTe 

TPC 
17.6% 17.6% 13.6% 14.3% 19.0% 

FPC_W1 
10.0% 8.6% 15.0% 4.8% 19.0% 

FPC_W2 
5.7% 7.1% 8.2% 9.5% 9.5% 

TPW1 
18.6% 21.9% 8.2% 0.0% 11.9% 

FPW1_C 
11.0% 6.2% 5.4% 4.8% 0.0% 

FPW1_W2 
3.8% 5.2% 4.8% 0.0% 2.4% 

TPW2 
11.0% 19.0% 21.1% 28.6% 16.7% 

FPW2_C 
15.7% 8.1% 15.0% 19.0% 9.5% 

FPW2_W1 
6.7% 6.2% 8.8% 19.0% 11.9% 

Prec_C 
52.9% 52.9% 37.0% 50.0% 40.0% 

Prec_W1 
55.7% 65.7% 44.4% 0.0% 83.3% 

Prec_W2 
32.9% 57.1% 47.0% 42.9% 43.8% 

Rec_C 
39.8% 55.2% 40.0% 37.5% 66.7% 

Rec_W1 
52.7% 59.7% 25.5% 0.0% 27.8% 

Rec_W2 
53.5% 60,6% 62.0% 75.0% 58.3% 

 

The machine learning process for the HSI texture parameters 

was the worst performing, with Precision and Recall, on 

average, lower than 50% for SVM, KNN, and ANN. 

 

The following tables present the recognition results when a 

fractal dimension is added. In general, as is evident from the 

data, this addition improves the quality of machine learning. 

 
TABLE VI 

EVALUATION  PARAMETERS FOR HUE (H) TEXTURE PATTERNS PLUS FRACTAL 

DIMENSION   
SVM KNN NNTr NNV NNTe 

TPC 
32.4% 31.4% 32.0% 33.3% 35.7% 

FPC_W1 
0.5% 1.4% 0.0% 4.8% 0.0% 

FPC_W2 
0.5% 0.5% 0.0% 0.0% 0.0% 

TPW1 
32.4% 31.9% 33.3% 33.3% 31.0% 

FPW1_C 
0.5% 1.0% 0.0% 0.0% 2.4% 

FPW1_W2 
0.5% 0.5% 0.0% 0.0% 0.0% 

TPW2 
32.4% 32.4% 34.7% 28.6% 31.0% 

FPW2_C 
0.5% 0.5% 0.0% 0.0% 0.0% 

FPW2_W1 
0.5% 0.5% 0.0% 0.0% 0.0% 

Prec_C 
97.1% 94.3% 100.0% 87.5% 100.0% 

Prec_W1 
97.1% 95.7% 100.0% 100.0% 92.9% 

Prec_W2 
97.1% 97.1% 100.0% 100.0% 100.0% 

Rec_C 
97.1% 95.7% 100.0% 100.0% 93.8% 

Rec_W1 
97.1% 94.4% 100.0% 87.5% 100.0% 

Rec_W2 
97,1% 97,1% 100,0% 100,0% 100.0% 
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TABLE VII 
EVALUATION PARAMETERS FOR SATURATION (S) TEXTURE PATTERNS PLUS 

FRACTAL DIMENSION  
SVM KNN NNTr NNV NNTe 

TPC 
32.4% 31.9% 28.6% 57.1% 35.7% 

FPC_W1 
1.0% 1.0% 0.0% 0.0% 0.0% 

FPC_W2 
0.0% 0.5% 0.0% 0.0% 0.0% 

TPW1 
32.4% 31.9% 36.1% 28.6% 26.2% 

FPW1_C 
1.0% 1.4% 0.0% 0.0% 2.4% 

FPW1_W2 
0.0% 0.0% 0.0% 0.0% 0.0% 

TPW2 
32.4% 32.4% 35.4% 14.3% 0.0% 

FPW2_C 
1.0% 1.0% 0.0% 0.0% 0.0% 

FPW2_W1 
0.0% 0.0% 0.0% 0.0% 35.7% 

Prec_C 
97.1% 95.7% 100.0% 100.0% 100.0% 

Prec_W1 
97.1% 95.7% 100.0% 100.0% 91.7% 

Prec_W2 
97.1% 97.1% 100.0% 100.0% 100.0% 

Rec_C 
94.4% 93.1% 100.0% 100.0% 93.8% 

Rec_W1 
97.1% 97.1% 100.0% 100.0% 100.0% 

Rec_W2 
100,0% 98,6% 100,0% 100,0% 100.0% 

 
 

TABLE VIII 

EVALUATION PARAMETERS FOR INTENSITY (I) TEXTURE PATTERNS PLUS 

FRACTAL DIMENSION  
SVM KNN NNTr NNV NNTe 

TPC 
32.4% 31.9% 31.3% 52.4% 28.6% 

FPC_W1 
0.0% 0.5% 2.7% 4.8% 0.0% 

FPC_W2 
1.0% 1.0% 0,0% 0.0% 0.0% 

TPW1 
31.9% 31.4% 32.7% 19.0% 28.6% 

FPW1_C 
0.5% 0.5% 0.7% 0.0% 0.0% 

FPW1_W2 
1.0% 1.4% 0.0% 0.0% 0.0% 

TPW2 
32.4% 31.4% 32.7% 23.8% 40.5% 

FPW2_C 
0.5% 1.0% 0.0% 0.0% 0.0% 

FPW2_W1 
0.5% 1.0% 0.0% 0.0% 2.4% 

Prec_C 
97.1% 95.7% 92.0% 91.7% 100.0% 

Prec_W1 
95.7% 94.3% 98.0% 100.0% 100.0% 

Prec_W2 
97.1% 94.3% 100.0% 100.0% 94.0% 

Rec_C 
97.1% 95.7% 97.9% 100.0% 100.0% 

Rec_W1 
98.5% 95.7% 92.3% 80.0% 92.3% 

Rec_W2 
94,4% 93,0% 100.0% 100,0% 100,0% 

 
 

 
 

 

 
 

 
 

 

 
 

 

TABLE IX 
EVALUATION PARAMETERS FOR HSI TEXTURE PATTERNS PLUS FRACTAL 

DIMENSION   
SVM KNN NNTr NNV NNTe 

TPC 
25.7% 25.2% 29.3% 38.1% 21.4% 

FPC_W1 
7.1% 8.1% 8.2% 9.5% 2.4% 

FPC_W2 
0.5% 0.0% 0.0% 0.0% 0.0% 

TPW1 
22.4% 23.3% 22.4% 14.3% 40.5% 

FPW1_C 
9.5% 8.6% 3.4% 0.0% 11.9% 

FPW1_W2 
1.4% 1.4% 0.0% 0.0% 0.0% 

TPW2 
32.4% 31.0% 36.1% 38.1% 21.4% 

FPW2_C 
0.5% 1.0% 0.0% 0.0% 0.0% 

FPW2_W1 
0.5% 1.4% 0.7% 0.0% 2.4% 

Prec_C 
77.1% 75.7% 78.2% 80.0% 90.0% 

Prec_W1 
67.1% 70.0% 86.8% 100.0% 77.3% 

Prec_W2 
97.1% 92.9% 98.1% 100.0% 90.0% 

Rec_C 
72.0% 72.6% 89.6% 100.0% 64.3% 

Rec_W1 
74.6% 71.0% 71.7% 60.0% 89.5% 

Rec_W2 
94.4% 95,6% 100,0% 100,0% 100,0% 

 

The results obtained are promising compared to those 

presented by another related research on the subject. Although 

there are no specific developments for weed recognition in 

coffee crops in the literature consulted, it is possible to compare 

the results obtained with those of works oriented, in general, to 

weed recognition through different techniques. In [46], for 

example, using convolutional neural networks, CNN, to 

recognize different types of weeds, recognition percentages of 

97.78% are achieved in validation. On the other hand, [47], an 

exhaustive review of works on machine learning and deep 

learning, highlights research results for crop and weed 

discrimination with accuracy percentages of up to 95.1% using 

ANN and up to 98.2% using SVM. In [48], for weed recognition 

in strawberry and pea crops, recognition accuracies of 95.3% 

are achieved with CNN and 63.7% and 84.9% for SVM and 

KNN, respectively. 

 

In synthesis, in this work, the experiments with only texture 

patterns, hue (H), saturation (S), and intensity (I), without 

considering fractal dimension, showed that quadratic SVM 

reliably classifies coffee and weed samples, with Precision and 

Recall near or upper to 95%, on average. KNN, for its part, 

classifies with Precision and recall upper to 90% for Hue and 

Intensity patterns and upper to 86% for S patterns, on average, 

too; nevertheless, classification is better for SVM. 

ANN does a reasonable classification for hue and intensity 

patterns, but better for hue, with Precision and Recall equal to 

100% in the testing samples of hue patterns and upper to 80% 

for intensity patterns. Precision and Recall are minor to 60% for 

saturation patterns, on average.  

With Hue, Saturation, and Intensity (HIS) patterns, all 

classifiers have Precision and recall minor to 60%, on average.  

As was commented above, it is important to mention that 

when the fractal dimension is added as the fifth pattern, 

Precision and Recall improve in all classifiers, achieving values 
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near or upper to 97%, on average, in most 

experiments.  However, even if the fractal dimension is used, 

the classifiers function better with individual patterns H, S, and 

I than with pattern mixed (HIS).  For pattern mixed (HIS) plus 

fractal dimension, Precision and Recall achieve values of 80%, 

on average. 

IV. CONCLUSIONS 

The extraction of texture patterns from coffee and weeds 

images, in most experiments done, permits their classification 

with precision and recall upper or equal to 95%, on average, 

when the fractal dimension is not used, and upper or equal to 

97% on average when the fractal dimension is used as the fifth 

pattern. From the experimented classifiers, SVM and ANN 

have better outcomes than the KNN method. The classification 

has better results for individual texture patterns (hue, saturation, 

intensity), reduced by PCA, than for the mixed pattern (HSI), 

also reduced by PCA.  In all tests, the fractal dimension 

improves the performance of classifiers.  Experiments suggest 

that using this technology to identify and classify weeds 

associated with the coffee crop is viable. Tests with an extended 

group of weeds and samples, just as classification experiments 

in real-time, are necessary for classifier 

validation.  Applications of this type of technology are 

fundamental to improving the efficiency of the weed control 

system for the benefit of coffee crops and environmental 

protection. 
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