Scientia et Technica Año XXVIII, Vol. 28, No. 01, enero-marzo de 2023. Universidad Tecnológica de Pereira.
[5] A. Herez, H. El Hage, T. Lemenand, M. Ramadan, y M. Khaled,
“Review on photovoltaic/thermal hybrid solar collectors:
Classifications, applications and new systems”, Sol. Energy, vol. 207,
pp. 1321-1347, sep. 2020, DOI: 10.1016/j.solener.2020.07.062.
[6] R. Kumar y M. A. Rosen, “A critical review of photovoltaic–thermal
solar collectors for air heating”, Appl. Energy, vol. 88, n.
o
11, pp. 3603-
3614, nov. 2011, DOI: 10.1016/j.apenergy.2011.04.044.
[7] B. E. Tarazona-Romero, A. Campos-Celador, O. Lengerke-Perez, N.
Y. Castillo-Leon, y A. D. Rincon-Quintero, “Appropriate Technology
for Solar Thermal Desalination by Concentration Applied the
Humidification-Dehumidification Method”, en Applied Technologies,
Cham, 2023, pp. 415-428. DOI: 10.1007/978-3-031-24971-6_30.
[8] B. E. Tarazona-Romero, Á. Campos Celador, Y. A. Muñoz Maldonado,
C.
Sandoval Rodríguez, y J. G. Ascanio Villabona, “Prototype of lineal
solar collector Fresnel”, Visión Electrónica, vol. 14, n.
o
1, p. 4, 2020.
DOI: 10.14483/22484728.16013
[9] K. Lovegrove y W. Stein, “Chapter 1 - Introduction to concentrating
solar power technology”, en Concentrating Solar Power Technology
(Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing,
2021, pp. 3-17. DOI: 10.1016/B978-0-12-819970-1.00012-8.
[10] B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-
Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D.
Rincón-Quintero, “Development of a Fresnel Artisanal System for the
Production of Hot Water or Steam”, en Recent Advances in Electrical
Engineering, Electronics and Energy, Cham, 2021, pp. 196-209. DOI:
10.1007/978-3-030-72212-8_15.
[11] W.-D. Steinmann, “Thermal energy storage systems for concentrating
solar power plants”, 2021, pp. 399-440. DOI: 10.1016/B978-0-12-
819970-1.00008-6.
[12] H. Price et al., “Chapter 20 - Concentrating solar power best practices”,
en Concentrating Solar Power Technology (Second Edition), K.
Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725-757.
DOI: 10.1016/B978-0-12-819970-1.00020-7.
[13] P. V. Gharat, S. S. Bhalekar, V. H. Dalvi, S. V. Panse, S. P. Deshmukh,
y J. B. Joshi, “Chronological development of innovations in reflector
systems of parabolic trough solar collector (PTC) - A review”, Renew.
Sustain. Energy Rev., vol. 145, p. 111002, jul. 2021, DOI:
10.1016/j.rser.2021.111002.
[14] E. Z. Moya, “7 - Parabolic-trough concentrating solar power (CSP)
systems”, en Concentrating Solar Power Technology, K. Lovegrove y
W. Stein, Eds. Woodhead Publishing, 2012, pp. 197-239. DOI:
10.1533/9780857096173.2.197.
[15] E. Z. Moya, “Chapter 7 - Parabolic-trough concentrating solar power
systems”, en Concentrating Solar Power Technology (Second Edition),
K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 219-
266. DOI: 10.1016/B978-0-12-819970-1.00009-8.
[16] E. Zarza-Moya, “7 - Concentrating Solar Thermal Power”, en A
Comprehensive Guide to Solar Energy Systems, T. M. Letcher y V. M.
Fthenakis, Eds. Academic Press, 2018, pp. 127-148. DOI:
10.1016/B978-0-12-811479-7.00007-5.
[17] G. Barone, A. Buonomano, C. Forzano, y A. Palombo, “Chapter 6 -
Solar thermal collectors”, en Solar Hydrogen Production, F. Calise, M.
D.
D’Accadia, M. Santarelli, A. Lanzini, y D. Ferrero, Eds. Academic
Press, 2019, pp. 151-178. DOI: 10.1016/B978-0-12-814853-2.00006-
0.
[18] C. B. Anfinsen, “Solar Energy”, Science, vol. 192, n.
o
4236, pp. 202-
202, abr. 1976, DOI: 10.1126/science.192.4236.202.
[19] B. E. Tarazona-Romero, “Evaluation of the incidence of optical and
physical characteristics on the performance of a Fresnel Linear
Collector prototype”, Period. Eng. Nat. Sci. PEN, vol. 11, n.
o
1, Art. n.
o
1, feb. 2023, DOI: 10.21533/pen.v11i1.3105.
[20] M. Malekan, A. Khosravi, y M. El Haj Assad, “Chapter 6 - Parabolic
trough solar collectors”, en Design and Performance Optimization of
Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds.
Academic Press, 2021, pp. 85-100. DOI: 10.1016/B978-0-12-821602-
6.00007-9.
[21] J. Fredriksson, M. Eickhoff, L. Giese, y M. Herzog, “A comparison and
evaluation of innovative parabolic trough collector concepts for large-
scale application”, Sol. Energy, vol. 215, pp. 266-310, feb. 2021, DOI:
10.1016/j.solener.2020.12.017.
[22] S. Toghyani, E. Baniasadi, y E. Afshari, “Thermodynamic analysis and
optimization of an integrated Rankine power cycle and nano-fluid based
parabolic trough solar collector”, Energy Convers. Manag., vol. 121,
pp. 93-104, ago. 2016, DOI: 10.1016/j.enconman.2016.05.029.
[23] R. Silva, M. Pérez, M. Berenguel, L. Valenzuela, y E. Zarza,
“Uncertainty and global sensitivity analysis in the design of parabolic-
trough direct steam generation plants for process heat applications”,
Appl. Energy, vol. 121, pp. 233-244, may 2014, DOI:
10.1016/j.apenergy.2014.01.095.
[24] R. V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, y A. G.
Quiroga, “Exergy analysis of parabolic trough solar receiver”, Appl.
Therm. Eng., vol. 67, n.
o
1, pp. 579-586, jun. 2014, DOI:
10.1016/j.applthermaleng.2014.03.053.
[25] S. Peng, H. Hong, H. Jin, y Z. Zhang, “A new rotatable-axis tracking
solar parabolic-trough collector for solar-hybrid coal-fired power
plants”, Sol. Energy, vol. 98, pp. 492-502, dic. 2013, DOI:
10.1016/j.solener.2013.09.039.
[26] Natraj, B. N. Rao, y K. S. Reddy, “Wind load and structural analysis
for standalone solar parabolic trough collector”, Renew. Energy, vol.
173, pp. 688-703, ago. 2021, DOI: 10.1016/j.renene.2021.04.007.
[27] S. A. Kalogirou, “A detailed thermal model of a parabolic trough
collector receiver”, Energy, vol. 48, n.
o
1, pp. 298-306, dic. 2012, DOI:
10.1016/j.energy.2012.06.023.
[28] F. I. Nascimento, E. W. Zavaleta-Aguilar, y J. R. Simões-Moreira,
“Algorithm for sizing parabolic-trough solar collectors”, Therm. Sci.
Eng. Prog., p. 100932, abr. 2021, DOI: 10.1016/j.tsep.2021.100932.
[29] A. Z. Hafez et al., “Design analysis of solar parabolic trough thermal
collectors”, Renew. Sustain. Energy Rev., vol. 82, pp. 1215-1260, feb.
2018, DOI: 10.1016/j.rser.2017.09.010.
[30] W. Qu, R. Wang, H. Hong, J. Sun, y H. Jin, “Test of a solar parabolic
trough collector with rotatable axis tracking”, Appl. Energy, vol. 207,
pp. 7-17, dic. 2017, DOI: 10.1016/j.apenergy.2017.05.114.
[31] Y. Yao, Y. Hu, S. Gao, G. Yang, y J. Du, “A multipurpose dual-axis
solar tracker with two tracking strategies”, Renew. Energy, vol. 72, pp.
88-98, dic. 2014, DOI: 10.1016/j.renene.2014.07.002.
[32] M. S. Al-Soud, E. Abdallah, A. Akayleh, S. Abdallah, y E. S. Hrayshat,
“A parabolic solar cooker with automatic two axes sun tracking
system”, Appl. Energy, vol. 87, n.
o
2, pp. 463-470, feb. 2010, DOI:
10.1016/j.apenergy.2009.08.035.
[33] W. Schiel y T. Keck, “Chapter 9 - Parabolic dish concentrating solar
power systems”, en Concentrating Solar Power Technology (Second
Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021,
pp. 311-355. DOI: 10.1016/B978-0-12-819970-1.00007-4.
[34] C. Chang, “5 - Tracking solar collection technologies for solar heating
and cooling systems”, en Advances in Solar Heating and Cooling, R.
Z. Wang y T. S. Ge, Eds. Woodhead Publishing, 2016, pp. 81-93. DOI:
10.1016/B978-0-08-100301-5.00005-9.
[35] D. Sakthivadivel, K. Balaji, D. Dsilva Winfred Rufuss, S. Iniyan, y L.
Suganthi, “Chapter 1 - Solar energy technologies: principles and
applications”, en Renewable-Energy-Driven Future, J. Ren, Ed.
Academic Press, 2021, pp. 3-42. DOI: 10.1016/B978-0-12-820539-
6.00001-7.
[36] J. D. Aequez Florez y M. Y. Almeida Lozano, “Diseño y construcción
de un prototipo de colector solar cilíndrico parabólico para la
producción de vapor teniendo en cuenta las condiciones climáticas de
la zona en las que se encuentra las unidades tecnologías de Santander”,
Pregrado, Unidades Tecnologicas de Santader, Bucaramanga, 2019.
Brayan Eduardo Tarazona Romero, was
born in Floridablanca, Santander, Colombia
in 1992. He received the Engineering
degree in electromechanical from the
Unidades Tecnológicas de Santander,
Colombia, in 2015, the Magister degree in
Renewable energy and energetic efficiency
from the Universidad a Distancia de
Madrid, España, in 2018 and currently
study a Ph.D. in Energy efficiency and sustainability in
engineering and architecture from Universidad del Pais Vasco,
España. From 2016 to 2018, he was a professor at the Unidades
Tecnológicas de Santander, Colombia. In 2019 he was a
parttime research professor at the Unidades Tecnológicas de
Santander, Colombia. Currently, he is a full-time research