appropiated temperature to obtain protein-free samples. In
addition, the presence of CaO was detected in the
diffractograms, which confirms that the samples obtained at
800 °C and 1000 °C are rich in Ca. The samples Ca/P ratio is
higher than pure HAp, being the closest relation to this the 800
°C sample with a value of 1.76. Likewise, the reduction in the
FWHM of the peaks in XRD represents an increase in the
formation of crystals and in their size. It is found that this
occurs as the calcination temperature increases as shown in the
samples of SEM. This increment rises the formation of grains
due to the phenomenon of coalescence, i.e., this temperature
supplies energy for the formation of the crystallites. It should
be noted that the increase in the FWHM is not necessarily
linked to the quality of the crystallites. However, the lattice
parameters of the crystal structure do not present major
variations with temperature, it is feasible to associate it with
the presence of impurities such as carbonates because the
study material comes from a biogenic source. On the other
hand, it should be noted that there is a need of samples
calcination when they come from animal sources. As was
mentioned earlier, at temperatures below 600 °C the sample is
considered amorphous. For future studies, it is recommended
to take temperature values between 600 and 800 °C, and 800
and 1000 °C, since for the Ca/P ratio considerable changes
occur between these temperature range. Finally, according to
the obtained results, the samples calcined at 800 °C are
considered promising for biocompatibility studies.
REFERENCES
[1] Hardouin, P. Les biomatériaux de l’appareil locomoteur. Rev Rhum
Mal Ostéoartic 1992, volume 59, page range: 829-833.
[2] Ratner, B.D; Hoffman, A.S; Schoen, F.J; Lemons, J.E. Biomaterials
science: an introduction to materials in medicine, 3rd ed.; California,
San Diego, 2004; pp. 157-196.
[3] Aquilano, D; Bruno, M; Rubbo, M; Massaro, F.R; and Pastero, L. Low
symmetry polymorph of hydroxyapatite. theoretical equilibrium
morphology of the monoclinic Ca5(OH)(PO4)3. Cryst. Growth Des.
2014, volume 14, page range: 2846–2852.
[4] Garcia-Garduño, M.V.; Reyes-Gasga, J. La hidroxiapatipa, su
Importancia en los Tejidos Mineralizados y su aplicación. Rev. Espec.
en Ciencias Químico-Biológicas 2006, volume 9(2), page range: 90-95.
[5] Forero, P.A. Influencia de la Temperatura en Hidroxiapatita Extraida a
Partir de Hueso de Cerdo.Tesis de maestria, Universidad Nacional de
Colombia, Manizales,2017.
[6] Alghamdi, M.M.; Awwad, N.S.; Al-Sharaey, A.A., Abd-Rabboh, H. S.,
and Keshk, S. M. Physicochemical characterization of natural
hydroxyapatite/ cellulose composite. Indian Journal of Fibre and
Textile Research 2019, volume 44 (1), page 45-50.
[7] Janus, A. M.; Faryna, M.; Haberko, K.; Rakowska, A.; Panz, T.
Chemical and microstructural characterization of natural
hydroxyapatite derived from pig bones. Microchim 2008, volume 161,
page range: 349-353.
[8] Lozano, L.F.; Peña-Rico, M.A.; Heredia, A. et al. Thermal analysis
study of human bone. Journal of Materials Science 2003, volume 38,
page range: 4777–4782.
[9] Raya, I.; Mayasari, E.; Yahya, A.; Syahrul, M.; Latunra, A. I.
Shynthesis and Characterizations of Calcium Hydroxyapatite Derived
from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard
against to Dental Demineralizations. Int. J. Biomater 2015, volume
2015, page range: 1–8.
[10] Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; de Carlos, A.;
León, B. Biological hydroxyapatite obtained from fish bones. Mater.
Sci. Eng. C 2018, volume 32, page range: 478-486.
[11] González-Rodríguez, L.; López-Álvarez, M.; Astray, S.; Solla, E. L.;
Serra, J.; González, P. Hydroxyapatite scaffolds derived from deer
antler: Structure dependence on processing temperatura. Mater. Charact
2019, volumen 155, page range: 1-13.
[12] Buddy, D.; Ratner, A.S.; Hoffman, F. J.; Schoen, J.E. An introduction
to materials in Medicine, 3rd ed.; California, San Diego, 1996; pp. 289-
352.
[13] Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.;Jamshidi,
A. Synthesis methods for nanosized hydroxyapatite in diverse
structures. Acta Biomater 2013, volume 2013, page range: 31.
[14] Figueiredo, M.; Fernando, A.; Martins, G.; Freitas, J.; Judas, F.;
Figueiredo, H. Effect of the calcination temperature on the composition
and microstructure of hydroxyapatite derived from human and animal
bone. Ceram. Int 2010, volume 36, page range: 2383-2393.
[15] Rodriguez-García, M. E.; et al. Comparison of physicochemical
properties of bio and commercial hydroxyapatite. Curr. Appl. Phys
2013, volume 13, page range: 1383-1390.
[16] Taubert, A.; et al. Water-soluble cellulose derivatives are sustainable
additives for biomimetic calcium phosphate mineralization. Inorganics
2016, volume 4, page range:1-17.
[17] Ramirez-Gutierrez, C. F.; Londoño-Restrepo, S. M.; del Real, A.;
Mondragón, M. A.; Rodriguez-García, M. E. Effect of the temperature
and sintering time on the thermal, structural, morphological, and
vibrational properties of hydroxyapatite derived from pig bone.
Ceramics International 2017, volume 43, page range: 7552-7559.
[18] Londoño-Restrepo, S. M.; Jeronimo-Cruz, R.; Rubio-Rosas, E.;
Rodriguez-García, M. E. The effect of cyclic heat treatment on the
physicochemical properties of bio hydroxyapatite from bovine bone. J.
Mater. Sci. Mater. Med 2018, volume 2018, page range: 29–52.
[19] Londoño-Restrepo, S. M.; Millán-Malo, B. M.; del Real-López, A.;
Rodriguez-García, M. E. In situ study of hydroxyapatite from cattle
during a controlled calcination process using HT-XRD. Mater. Sci.
Eng. C 2019, volume 105, page range: 110020.
[20] Miti, Z.; et al. Instrumental methods and techniques for structural and
physicochemical characterization of biomaterials and bone tissue: A
review. Mater. Sci. Eng. C 2017, volume 79, page range: 930-949.
[21] Ellingham, S. T. D.; Thompson, T. J. U.; Islam, M. Thermogravimetric
analysis of property changes and weight loss in incinerated bone.
Palaeogeogr. Palaeoclimatol. Palaeoecol 2015, volume 438, page
range: 239-244.
[22] Stevens, M.M. Biomaterials for bone tissue engineering (Review).
Mater today 2008, volume 11, page range: 18-25.
[23] Krishna, D. S. R.; Chaitanya, C. K.; Seshadri, S. K.; Kumar, T. S. S.
Fluorinated hydroxyapatite by hydrolysis under microwave irradiation.
Trends Biomater, Artif. Organs 2002, volume 16, page range: 15-17.
[24] Rajendran, J.; Gialanella, S.; Aswath, P.B. XANES analysis of dried
and calcined bones. Mater. Sci. Eng. C 2013, volume 33, page range:
3968–3979.
[25] Schumacher, T.C.; et al. A novel, hydroxyapatite-based screw-like
device for anterior cruciate ligament (ACL) reconstructions. Knee
2017, volume 24, page range: 933-939.
[26] Akyurt, N.; Yetmez, M.; Karacayli, U.; Gunduz, O. A New Natural
Biomaterial: Sheep Dentine Derived Hydroxyapatite. Key Eng. Mater
2012, volume 494, page range: 281-286.
[27] Duta, L.; et al. Comparative physical, chemical and biological
assessment of simple and titanium-doped ovine dentine-derived
hydroxyapatite coatings fabricated by pulsed laser deposition. Appl.
Surf. Sci 2017, volume 413, page range: 129-139.
[28] Poovendran, K.; Joseph-Wilson, K. S. Amalgamation and
characterization of porous hydroxyapatite bio ceramics at two various
temperatures. Mater. Sci. Semicond. Process 2019, volume 100, page
range: 255–261.
[29] Ramirez-gutierrez, C. F.; London, S. M.; Rubio-Rosas.; Study of
bovine hydroxyapatite obtained by calcination at low heating rates and
cooled in furnace air. Mater. Sci 2016, volume 51, page range: 4431-
4441.
[30] Bohner, M. “Calcium orthophosphates in medicine: from ceramics to
calcium phosphate cements,” Int. J. Care Inj., 2000.
[31] Kumar, S.; Jahan, R. A.; Yee, S.; Li, X.; and Arafat, M. T. “Effects of
organic modifiers and temperature on the synthesis of biomimetic
carbonated hydroxyapatite,” vol. 45, no. May, pp. 24717–24726, 2019.
[32] Sobczak-kupiec, A. and Wzorek Z. “The influence of calcination
parameters on free calcium oxide content in natural hydroxyapatite,”
Ceram. Int., vol. 38, no. 1, pp. 641–647, 2012.
[33] Fleet, M. E.; Liu, X.-Y. and Pan, Y.-M. “Site preference of rare earth
elements in hydroxyapatite Ca10 (P O4)6 (O H)2,” J. Solid State
Chem., vol. 149, pp. 391–398, 2000.
[34] Alshemary, Z.; Akram, M.; Goh, Y. F.; Abdul Kadir, M. R.; Abdolahi,
A. and Hussain, R. “Structural characterization, optical properties and