
Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira. ISSN 0122-1701 y ISSN: 2344-7214

417

 1Abstract—Programmable Logic Controllers (PLC) are

an essential part of automated industrial production

processes since their first implementation, so

understanding the IEC 61131 standard and, above all,

section three defines the programming languages allowed

by PLCs take relevance over time. This work describes

each of the programming languages described in IEC

61131-3. Additionally, it implements an automation system

based on Structured Text with a Human Machine

Interface (HMI). The plant is a temperature process with a

classic control system developed using Matlab tools, such

as System Identification, PID Tuner, and Simulink. For

the HMI, was implemented the Codesys Group industrial

automation process platform. The Simulink PLC Coder

toolbox allows the strengthening of the connection between

the control system and the HMI. This program generates

the Structured Text of a control system developed in

Simulink. For the analysis of results, the control behavior

compared between Simulink and the system produced in

Codesys Group obtained an error of less than 0.34%.

Index Terms— Classic Control, IEC 61131-3, Simulink PLC

Coder, Structured Text, Programmable Logic Controllers.

Resumen— Los Controladores Lógicos Programables (PLC)

son una parte esencial de los procesos de producción industrial

automatizada desde su primera implementación, por lo que la

comprensión del estándar IEC 61131 y, sobre todo, la sección tres

que define los lenguajes de programación que permiten que los

PLC toman relevancia con el tiempo. Este trabajo describe cada

uno de los lenguajes de programación descritos en el estándar

IEC 61131-3. Además, implementa un sistema de automatización

This manuscript was sent on October 11, 2021 and accepted on November

30, 2021.

A. F. Barrera-Cuestas student of the Universidad Distrital Francisco José
de Caldas. Bogotá, Colombia. (e-mail: afbarrerac@correo.udistrital.edu.co).

M. G. Mantilla-Castañeda student of the Universidad Distrital Francisco

José de Caldas. Bogotá, Colombia. (e-mail:
mgmantillac@correo.udistrital.edu.co).

D. A. Giral-Ramírez professor of the Universidad Distrital Francisco José

de Caldas. Bogotá, Colombia. (e-mail: dagiralr@udistrital.edu.co).
O. D. Montoya-Giraldo professor of the Universidad Distrital Francisco

José de Caldas. Bogotá, Colombia. (e-mail: odmontoyag@udistrital.edu.co).

basado en texto estructurado con una interfaz hombre-

máquina (HMI). La planta es un proceso de temperatura con un

sistema de control clásico desarrollado con herramientas de

Matlab, como System Identification, PID Tuner y Simulink. Para

la HMI, se implementó la plataforma de procesos de

automatización industrial del Grupo Codesys. El toolbox

Simulink PLC Coder permite reforzar la conexión entre el

sistema de control y el HMI. Este programa genera el Texto

Estructurado de un sistema de control desarrollado en Simulink.

Para el análisis de resultados, el comportamiento del control

comparado entre Simulink y el sistema producido en Codesys

obtuvo un error inferior al 0,34%.

 Palabras claves— Control Clásico, IEC 61131-3, Simulink

PLC Coder, Lenguaje Estructurado, Controladores Lógicos

Programables.

I. INTRODUCTION

OR diversification, technology control systems require the

incorporation of electronic, electrical, information, and

advanced manufacturing technologies in the means of

production for the automation and digitization of processes,

which is a requirement for new models of energy business and

an opportunity for government-academia (research) -industrial

technology synchrony in a sector that in its transition seeks to

integrate: renewable sources, direct current (DC) transport

systems, energy storage, distributed generation, measurement

systems, smart grids and the participation of end-users.

Elements, in their structure, are associated with new energy

generation and efficiency technologies, such as those targeted

by Industry 4.0, which has different technological trends.

Since their creation in the 60s, Programmable Logic

Controllers (PLC) have become indispensable devices when

carrying out an automation process and are relevant elements

in the challenges proposed by the industry. In the same way,

their constant updating, not only at the hardware level but at

the level of software and programming languages, allow these

instruments to keep at the forefront to the point of being seen

as an ideal option to face the fourth industrial revolution,

where, reduction of production times, optimization of the

levels of quality and resources used will allow us to enter into

this revolution; and, in turn, lead the industry to focus on

caring for the environment [1].

Temperature control using the simulink PLC

Coder and the IEC 61131 standard

Control de la temperatura mediante Simulink PLC Coder y el estándar IEC 61131

or A. F. Barrera-Cuestas ; M. G. Mantilla-Castañeda ; D. A. Giral-Ramírez ;

O. D. Montoya-Giraldo .
DOI: https://doi.org/10.22517/23447214.24947

Artículo de investigación científica y tecnológica

F

https://revistas.utp.edu.co/index.php/revistaciencia/Politica-de-acceso-abierto
https://doi.org/10.22517/23447214.24947
https://orcid.org/0000-0001-5136-2085
http://orcid.org/0000-0001-9983-4555
https://orcid.org/0000-0001-6051-4925

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira. 418

This article analyzes the IEC 61131-3 standard based on

each of the programming languages it describes, in addition to

implementing a controller through the use of industrial tools

such as Simulink PLC Coder and CODESYS. The objective is

to adopt a temperature control to an HMI through Structured

Text. The temperature control is carried out in Simulink,

employing the Toolbox Simulink PLC Coder that generates

the high-level programming structure. Finally, the HMI is

built and programmed in Codesys using the previously

obtained Structured Text.

II. STANDART IEC 61131-3

Section of the IEC 61131 standard created by the

International Electrotechnical Commission (IEC). This

standard defines the five programming languages for

Programmable Logic Controllers (PLC) to obtain order when

carrying out an industrial automation process through these

devices. The IEC standard determines the programming

languages: Ladder Diagram, Function Block Diagram (FBD),

Instruction List (IL), Structured Text (ST), and Sequential

Function Chart (SFC) [2].

Define abbreviations and acronyms the first time they are

used in the text, even after they have already been defined in

the abstract. Abbreviations such as IEEE, SI, ac, and dc do not

have to be defined. Abbreviations that incorporate periods

should not have spaces: write “C.N.R.S.,” not “C. N. R. S.”

Do not use abbreviations in the title unless they are

unavoidable (for example, “IEEE” in the title of this article).

A. Ladder Diagram

Designed primarily for processing Boolean signals using

power rail delimited graphical symbols that together resemble

steps in a ladder logic diagram. The Ladder programming

language allows, through the use of contact logic, to connect

elements in series (AND) or in parallel (OR), which contribute

to the flow or interruption of energy to supply an output called

coil [3].

B. Function Block Diagram (FBD)

Based on the standard, today retired, IEC 60617-12, the

FBD programming language defines a series of graphic

elements. These elements allow the generation of a structure

that from rectangular boxes with inputs, outputs, and flow

statements of control they manage to carry out logical,

arithmetic expressions or calls a function block so that once

interconnected employing signal flow lines they can feed the

outputs of the system [4].

C. Instruction List (IL)

The IL programming language, considered a low-level

programming language, consists of a progression of

instructions made up of modifiers and operations. These

instructions aim that when carried out, they recreate a list of

instructions. Even though its rapid processing makes one of its

main implementations that of control processes, the IEC has

decided not to take it into account for its next update [5].

D. Structured Text (ST)

The ST language is derived from the Pascal programming

language, and it is considered, by the standards, as one of the

high-level languages. The ST Language can control the

command flow by variables, expressions, or declarations of

type selection, iterations, complex mathematical formulas, or

calculations; it is easy for a programmer to apply and

understand [6] [7].

E. Sequential Function Chart (SFC)

The SFC was created to divide a more complex program

into small manageable units. SFC graphically describes the

control flow between systems using stages and transitions to

design sequential and parallel processes. The SFC language

allows the visualization of the dependencies or

interdependencies of the laps according to the process

location. It also releases programming its units in the

programming languages mentioned above [8] [9].

III. CONTROLLER WITH HMI

The proposed methodology was divided into six stages.

The flow charts in Fig. 1, Fig. 2 and Fig. 3 describe the six

stages.

A. Stage 1: Obtaining the transfer function in discrete time

It is necessary to establish the behavior of the system to be

analyzed to obtain the transfer function. Fig. 4 presents the

heating curve of the selected system; this curve was generated

by laboratory tests. The minimum temperature reached was

24.93 °C, and the maximum was 78.2 °C.

With the Matlab System Identification toolbox, the heating

curve of the thermal plant, and the supply voltage, the data is

processed to obtain the transfer function in the continuous-

time domain (1), gathering a 96.03% correspondence.

Employing the Matlab c2d command the transfer function is

obtained in the discrete-time domain (2), using the Tustin

discretization method. Fig. 4 represents the system heating

curve and the discrete-time transfer function curve.

() 3 2

2.72 0.05514

2.238 9.543 0.05266
S

s
H

s s s

+
=

+ + +
 (1)

3 2

() 3 2

0.1523 0.1553 0.1461 0.1492

0.3798 0.1075 0.5011
z

z z z
H

z z z

+ − −
=

+ + +

(2)

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira.

419

Fig. 1. Stage 1, 2 and 3 of the design and implementation of the controller
with HMI. Own Work

Fig. 2. Stage 4 of the design and implementation of the controller with HMI.
Own Work

Fig. 3. Stage 5 and 6 of the design and implementation of the controller with
HMI. Own Work

Stage 1: Discrete time
transfer function

Stage 2: PID
controller parameters

Stage 3: Plant and
control simulation

End stage 1

End stage 2

End stage 3

Plant characterization PID Tuner

Simulink

Load transfer
function

Implement plant and
control

Set control, speed
and aggressiveness

Check plant and
generate disturbances

System identification
toolbox

No

No

Yes

Yes

Yes

No

Transfer function
model

Get Kp, Ki and Kd

Get Kp, Ki and Kd

Check behavior

Efficient behavior?

correspondence

 < 90%

Correct operation?

Stage 1:
Discrete time

transfer
function

Stage 4: Simulink PLC
Coder

End stage 4

Generate subsystem
of the architecture

PLC Coder

Check plant and
generate disturbances

Run PLC coder
compiler

Path to save the
generated code

Set up automation
software

Stage 5: PLC coder
environment Codesys

Stage 6: PLC coder
environment Codesys

End stage 6

End stage 5

Run Codesys
Output parameters

to compare Codesys
and Simulink

Create SFC project

Import the code from
PLC coder

1

1

Perform adjustment

Yes

No
Correct operation?

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira. 420

Fig. 4. Plant heating curve and discrete transfer function. Own Work

B. Stage 2: Obtaining the constants of the classical controller

Using the PID Tuner toolbox on the transfer function in the

discrete-time domain, a PI controller is implemented that

adjusts to the system under study. A fast response time and a

robust transient behavior are selected, obtaining the constants

of proportionality and integrity described in Table I and an

output behavior as observed in Fig. 5.

TABLE I

CLASSIC CONTROLLER CONSTANTS

Constant Values

Constant of proportionality (Kp) 0.49989

Integrity constants (Ki) 0.45537

Fig. 5. The behavior of the plant with a PI controller. Own Work

C. Stage 3: Design and simulation of the plant architecture

in the Simulink environment

Using the Simulink block diagram environment, the system

behavior is simulated, implementing the PI controller, as seen

in Fig. 6 and Fig. 7 shows the behavior of the system with and

without control when applying disruptions.

Fig. 6. System modeling in Simulink. Own Work

Fig. 7. Plant with PI control and without PI control with two disruptions.

Own Work

D. Stage 4: Installation and configuration of the Simulink

PLC Coder toolbox

The Matlab toolbox, Simulink PLC Coder, is a tool that

allows the generation of programming code in ST language

from Simulink models. It is possible to generate the

programming code in 15 different simulators, including

Codesys 3.5 [10]. Fig. 8 presents the programming code

obtained through Simulink PLC Coder for the controller

described in Fig. 6.

Fig. 8. Programming code generated by Simulink PLC Coder. Own Work

E. Stage 5: Adaptation of the code generated in the Codesys

environment

Some modifications are required to implement the

programming code generated by Simulink PLC Coder in the

Codesys interface; adjustments such as, change the global

variables of constant type for general global variables to

modify their state once the project is carried out. Additionally,

in ST is created a statement that represents the feedback of the

system of Fig. 6. The Simulink PLC Coder toolbox does not

have the support to generate the closed-loop so that it is

necessary to make that adjustment. Fig. 9 presents the

programming code obtained with closed-loop.

 t s

 nt n nt

t s

 nt sin nt

 nt n nt e t i n e t i n

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira.

421

Fig. 9. Programming code with feedback. Own Work

F. Stage 6: Comparison of the Simulink and Codesys output

curves

To determine qualitatively and quantitatively the graphs

obtained in Simulink and Codesys, it was necessary to carry

out three case studies to find the percentage of error between

them. So, scenarios are analyzed where the behavior of each

of the graphs is compared at specific points. These scenarios

are:

1) Initial maximum temperature: The maximum temperature

that the plant reaches during the heating process at the initial

setpoint.

2) Initial maximum temperature: The maximum temperature

that the plant reaches during the heating process at the initial

setpoint.

3) Maximum temperature in the disruption: The maximum

temperature that the plant reaches when it is applied disruption

to the system.

4) The maximum temperature change of the setpoint: The

maximum temperature that the plant reaches when

establishing a new value of the setpoint.

5) Stabilization: Temperature registered by the plant when

stabilizing at the second setpoint.

6) Before the disturbance: The indicated temperature by the

plant before the disruption occurs.

7) Before the setpoint changes: The recorded temperature by

the plant before the setpoint change occurs.

From (3) is found the percentage of error between behaviors.

%

Simulink CODESYS

Simulink

T T
e

T

−
= (3)

Where:

TSimulink: Temperature recorded by Simulink

TCodesys: Temperature recorded by Codesys.

Case 1: Disruption and positive setpoint

The behavior and results obtained in Fig. 10 and Table II

relate the curves produced by Simulink and Codesys from

assigning a negative setpoint and disturbance. These results

are from the following parameters:

▪ From the beginning of the code implementation, it

establishes an initial setpoint of 30°C.

▪ Disruption generation of 20 °C within 120 seconds of

executing the code.

▪ Updating the setpoint to 60 °C within 200 seconds of

carrying out the code.

Fig. 10. The heating curve obtained from the Codesys (blue) and Simulink

(green) software for positive disruption and setpoint. Own Work

TABLE II

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES

DETERMINED WITH POSITIVE DISTURBANCE AND SETPOINT

Action of interest Time [s]
T. Codesys

[°C]

T. Simulink

[°C]
Error [%]

Max. initial Temp. 41 31.4846 31.390 0.3010

Max. disruption

Temp.
120 50.4341 49.0293 2.8652

Max change setpoint

Temp.
241 61.1377 61.1775 0.1281

Stabilization 379 60.1377 60.1431 0.0089

Before the

disruption
119 30.4415 30.4518 0.3382

Before the setpoint

change
199 29.5427 29.5249 0.0602

Case 2: Disturbance and negative setpoint

The behavior and results obtained in Fig. 11 and Table III

relate the curves produced by Simulink and Codesys, the error

percentages obtained in each of them, from assigning a

negative setpoint and disruption. These results are from the

following parameters:

▪ From the beginning of the code completion, it establishes

an initial setpoint of 50°C.

▪ Generation of a disruption of -20 °C within 120 seconds

of executing the code.

▪ Updating the setpoint to 30 °C within 200 seconds of

implementing the code.

t s

S id en desys

S id en Sim in e t i n di i i n set int

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira. 422

Fig. 11. The heating curve obtained from the Codesys (blue) and Simulink

(green) software for a negative disruption and setpoint. Own Work

TABLE III

ERRORS BETWEEN SIMULINK AND CODESYS FOR DETERMINED HEATING

CURVE TIMES WITH NEGATIVE DISTURBANCE AND SETPOINT

Action of interest
Time

[s]

T. Codesys

[°C]

T. Simulink

[°C]
Error [%]

Max. initial Temp. 43 52.4471 52.3377 0.2090

Max. disruption

Temp.
120 30.5275 32.1553 5.0623

Max change

setpoint Temp.
248 29.4014 29.4275 0.08869

Stabilization 379 29.9299 29.9271 0.00935

Before the

disruption
119 50.7358 50.753 0.03388

Before the setpoint

change
199 50.7685 50.785 0.03248

Case 3: Positive disturbance and negative setpoint

The behavior and results recorded in Fig. 12 and Table IV

relate the curves produced by Simulink and Codesys and the

error percentages obtained in each of them from assigning a

positive disturbance and a negative setpoint. These results are

from the following parameters:

▪ From the beginning of the code execution, it sets down

an initial setpoint of 40°C.

▪ Generation of a 30 °C disruption within 120 seconds

after having implemented the code.

▪ Updating the setpoint to 28 °C within 200 seconds of

having executed the code.

Fig. 12. The heating curve obtained from the Codesys (blue) and Simulink

(green) software for positive disruption and negative setpoint. Own work

TABLE IV

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES

DETERMINED WITH POSITIVE DISTURBANCE AND NEGATIVE SETPOINT

Action of interest
Time

[s]

T. Codesys

[°C]

T. Simulink

[°C]

Error

[%]

Max. initial Temp. 44 41.9431 41.8701 0.1743

Max. disruption

Temp.
120 70.5788 68.4699 3.0800

Max change

setpoint Temp.
237 27.0289 27.0732 0.1636

Stabilization 379 27.9021 27.9000 0.0075

Before the

disruption
119 40.5887 40.6024 0.0034

Before the setpoint

change
119 39.2835 39.268 0.0395

G. Human-Machine Interface (HMI)

Employing the visualization manager of the Codesys

software is possible to present the most relevant information

on the plant control process. This visualization manager

allows the user to observe the current status of the thermal

plant; it also has the freedom to assign a new setpoint and

disruption value if required. In that sense, three screens are

designed to have total control of the plant. These screens are

the presentation screen, control-display screen, and control-

management screen.

1) Presentation screen: The presentation screen defines the

name and title of the project, the names of the developers, and

the institutional affiliation (Fig. 13).

Fig. 13. HMI splash screen layout. Own Work

2) Control-display screen: In the control and visualization

screen, the user can identify the current behavior of the

thermal plant and the disturbances that have been generated,

comparing the setpoint established with the current

temperature of the plant. In the same way, it displays the on or

off status of the plant, the current temperature value inside it,

and the error, in Celsius degrees. Finally, it has the option of

t s

S id en desys

S id en Sim in

 e t i n di i i n set int

t s

S id en desys

S id en Sim in di i i n set int e t i n

Scientia et Technica Año XXVI, Vol. 26, No. 04, diciembre de 2021. Universidad Tecnológica de Pereira.

423

establishing a new setpoint value and generating disruptions in

the system; it also allows turning the plant on or off (Fig. 14).

Fig. 14. Design of the HMI presentation and control screen. Own Work

3) Control-management screen: The control and

management screen allows determining, from the activation of

the indicators and a bar-shaped temperature chart, the current

status of the plant from the temperature registered inside it. So

that the thermal scale is divided into five ranges: very high,

high, medium, low, or very low. Using two additional

indicators, the user could determine if the system is stable or if

a setpoint has been established outside the allowed range; and

identify which does not guarantee the correct operation of the

control (Fig. 15).

Finally, the user can set a new setpoint value and display

the error of the current work.

Fig. 15. Design of the HMI control and management screen. Own Work

IV. GENERATED MATERIAL

Table V shows the name and the corresponding links to the

videos that complement the explanation of the stages

implemented.

TABLE V

ERRORS BETWEEN SIMULINK AND CODESYS FOR HEATING CURVE TIMES

DETERMINED WITH POSITIVE DISTURBANCE AND NEGATIVE SETPOINT

Stage Link

1 https://youtu.be/T6r58dViQyY

2 https://youtu.be/f072iUgtzAo

3 https://youtu.be/6WTzW24Uufk

4 https://youtu.be/WOqBgep14i0

5 https://youtu.be/giOsijFyxpM

6 https://youtu.be/m3Bhq1Ikpio

V. CONCLUSION

From the programming languages presented in the IEC

61131-3 standard, it is possible to highlight the facilities that

come with developing a project in high-level programming

languages (ST and SFC). The ST has selection type and

iteration type structures; the similarity between the

programming syntax with languages such as C ++, Matlab or

Python, makes the adaptability for a programmer who does

not know the standard more enjoyable. The SFC simplifies

projects where sequential, combinational, and parallel systems

predominate.

Analyzing the tables, It determinates that the error of the

results obtained from the simulated system in Codesys and the

system simulated in Simulink is less than 0.34% in all its

measurements, except for the one generated in the peak of

maximum or minimum disruption.

REFERENCES

[1] A. Instrumentación, ¿Hacia dode camina el futuro de los controladores

lógicos programables (PLCs)?, 2020.

[2] International Electrotechnical Commission, IEC 61131-3: Programmable
Logic Controllers, 2013.

[3] J. Alvarino, Método de programación para PLC’s basado en el estándar
IEC 61131-3 – caso de estudio proceso de elaboración de pan.
Universidad de la Salle, 2016.

[4] F. Angerer, H. Prähofer, R. Ramler and F. Grillenberger, Point to
analysis of IEC 61313-3 programs: Implementation and aplication, 2013.

[5] K. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial
Automation Systems, 2010.

[6] L. Huang, W. Liu and Z. Liu, Algorithm of Transformation from PLC
Ladder Diagram to Strucred Text, 2009.

[7] L. Brito, J. Almeida, J. Pecorelli, and P. Sousa, Simulation of Structured
Text Language for PLC Programming, 2015.

[8] R. Bilbao, and A. Mantilla, Diseño e Implementación de Automatismos
Lógicos Secuenciales en SFC para el PLC S7-200 y S7-Graph para el
PLC S7-300, 2011.

[9] R. Jaspe and A. Mosquera, Grafcet Aplicado al diseño de Automatismos
con PLC S7-200, 2007.

[10] The MathWorks, Inc, Simulink PLC Coder Generación de diagramas de

contactos (ladder) y texto estructurado IEC 61131-3 para PLCs y PACs,

2021.

https://youtu.be/T6r58dViQyY
https://youtu.be/f072iUgtzAo
https://youtu.be/6WTzW24Uufk
https://youtu.be/WOqBgep14i0
https://youtu.be/giOsijFyxpM
https://youtu.be/m3Bhq1Ikpio

