Scientia et Technica Año XXVIII, Vol. 29, No. 03, julio-septiembre de 2024. Universidad Tecnológica de Pereira.
microstructure by bainitic transformation generates a fracture
surface with a major ductile area for temperatures tested.
ACKNOWLEDGMENT
The authors would like to thank to Dr.-Ing. L. Mujica from
INCITEMA (UPTC) for supporting Thermo-Calc analysis. We
recognize the financial support received from Universidad
Nacional de Colombia, Bogotá.
REFERENCES
[1] Krauss, G. Steels: processing, structure, and performance, 1 ed. Ohio,
ASM International, 2000.
[2] Hertzberg, R., Vinci, R. and Hertzberg, J. Deformation and fracture
mechanics of engineering materials, 4 ed. Hoboken (NJ), Wiley, 2013.
[3] Dieter, G., Mechanical Metallurgy, SI ed. Singapore, McGraw-Hill,
1988.
[4] Shi, K., Hou, H., Chen, J., Kong, L., Zhang, H. and Li, J. Effect of
Bainitic Packet Size Distribution on Impact Toughness and its
Scattering in the Ductile-Brittle Transition Temperature Region of
Q&T Mn-Ni-Mo Bainitic Steels. Steel Research International, v. 87,
n. 2, pp. 165-172, Feb. 2016. https://doi.org/10.1002/srin.201400596
[5] API 571, Damage Mechanisms Affecting Fixed Equipment in the
Refining Industry, 2 ed. 2011
[6] Lees, F. and Mannan, S. Lees' Loss Prevention in the Process Industries,
4 ed. Oxford, Butterworth-Heinemann, 2012.
[7] Benac, D., Cherolis, N. and Wood, D. Managing Cold Temperature and
Brittle Fracture Hazards in Pressure Vessels. Journal of Failure
Analysis and Prevention, v. 16, pp. 55-66, Jan. 2016.
https://doi.org/10.1007/s11668-015-0052-3
[8] Sung, H., Shin, S., Hwang, B., Lee, C., Kim, N. and Lee, S. Effects of
carbon equivalent and cooling rate on tensile and Charpy impact
properties of high-strength bainitic steels. Materials Science and
Engineering: A, v. 530, pp. 530-538, Dec. 2011.
https://doi.org/10.1016/j.msea.2011.10.015
[9] Saedi, N. and Ekrami, A. Comparison of mechanical properties of
martensite/ferrite and bainite/ferrite dual phase 4340 steels. Materials
Science and Engineering: A, v. 523, n. 1-2, pp. 125-129, Oct. 2009.
https://doi.org/10.1016/j.msea.2009.06.057
[10] Avendaño-Rodríguez, Avendaño-Rodríguez DF, Rodriguez-Baracaldo
R, Weber S, Mujica-Roncery L. Damage Evolution and
Microstructural Fracture Mechanisms Related to Volume Fraction and
Martensite Distribution on Dual-Phase Steels. Steel Research
International 2022;n/a(n/a):2200460
[11] Dhua, S., Sarkar, P., Saxena, A. and Jha, B. Development of Fine-
Grained, Low-Carbon Bainitic Steels with High Strength and
Toughness Produced Through the Conventional Hot-Rolling and Air-
Cooling. Metallurgical and Materials Transactions A, v. 47, n. 12, pp.
6224-6236, Dec. 2016. https://doi.org/10.1007/s11661-016-3720-3
[12] Rodriguez-Galeano, K., Rodriguez-Baracaldo, R. and Mestra-
Rodriguez, A. Cabrera-Marreno, J. and Olaya-Florez, J. Influence of
boron content on the fracture toughness and fatigue crack propagation
kinetics of bainitic steels. Theoretical and Applied Fracture
Mechanics, v. 86, pp. 351-360, Sep. 2016.
https://doi.org/10.1016/j.tafmec.2016.09.010
[13] Zhang, T., Wang, L., Wang, Y., Hu, J., Di, H. and Xu, W. Tailoring
bainitic transformation and enhancing mechanical properties of
carbide-free bainitic steel via high-temperature ausforming. Materials
Science and Engineering: A, v. 852, 143677, Sep. 2022.
https://doi.org/10.1016/j.msea.2022.143677
[14] Reip, C., Henning, W., Hagmann, R. Sabrudin, B., Susanta, G. and Lee,
W. Thin slab processing of acicular ferrite steels with high toughness.
In: Rio Pipeline Conference & Exposition, Rio de Janeiro, Brazil,
2005.
[15] Wang, K., Hu, F., Zhou, S., Isayev, O., Yershov, S., Zhang, Z. and Wu,
K. Ultrahigh impact toughness achieved in high strength bainitic
ferrite/retained austenite lamellar steels below Mf temperature.
Materials Letters, v. 324, 132517, Oct. 2022.
https://doi.org/10.1016/j.matlet.2022.132517
[16] Saedi, N. and Ekrami, A. Impact properties of tempered bainite–ferrite
dual phase steels. Materials Science and Engineering: A, v. 527, n. 21-
22, pp. 5575-5581, Aug. 2010.
https://doi.org/10.1016/j.msea.2010.05.015
[17] Basiruddin, M., Alam, I. and Chakrabarti, D. The role of fibrous
morphology on the Charpy impact properties of low carbon ferrite-
bainite dual phase steel. Materials Science and Engineering: A, v. 716,
pp. 208-219, Feb. 2018. https://doi.org/10.1016/j.msea.2018.01.041
[18] ASTM E23-24. Standard Test Methods for Notched Bar Impact Testing
of Metallic Materials. ASTM International, West Conshohocken, PA,
2018, www.astm.org
[19] ASTM E112-24. Standard Test Methods for Determining Average Grain
Size. ASTM International, West Conshohocken, PA, 2013,
www.astm.org
[20] Vander Voort, G. ASM Handbook, Volume 09 - Metallography and
Microstructures. USA, ASM International, 2004.
[21] Zhou, M., Xu, G., Tian, J., Hu, H. and Yian, Q. Bainitic Transformation
and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr
Addition. Metals, v. 7, n. 7, 263, Jul. 2017.
https://doi.org/10.3390/met7070263
[22] Porter, D. and Easterling, K. Phase transformations in metals and alloys,
2 ed. UK, Springer-Science+Business Media, 1992.
[23] Bhadeshia, H. Thermodynamic analysis of isothermal transformation
diagrams. Metal Science, v. 16, n. 3, pp. 159-166, 1982.
https://doi.org/10.1179/030634582790427217
[24] Vander Voort, G. Atlas of time-temperature diagrams for irons and
steels. USA, ASM International, 1991.
[25] Cubides-Herrera, C., Villalba-Rondon, D. and Rodriguez-Baracaldo, R.
Charpy impact toughness and transition temperature in ferrite – perlite
steel. Scientia et Technica, v. 24, n. 2, pp. 200-204, Jun. 2019.
http://dx.doi.org/10.22517/23447214.19971
[26] Ibrahim, O. Comparison of Impact Properties for Carbon and Low Alloy
Steels. Journal of Materials Science & Technology, v. 27, n. 10, pp.
931-936, Oct. 2011. https://doi.org/10.1016/S1005-0302(11)60166-7
[27] Pickering, F. The structure and properties of bainite in steels. In:
Transformation and Hardenability in Steels, Climax Molybdenum Co.,
pp. 109-132, Michigan, Feb. 1967.
[28] Hu, J. Low-density nanostructured bainitic steel with fast transformation
rate and high impact-toughness. Materials letters, v. 261, 127105, Feb.
2020. https://doi.org/10.1016/j.matlet.2019.127105
[29] Chhajed, B., Mishra, K., Singh, K. and Singh, A. Effect of prior austenite
grain size on the tensile properties and fracture toughness of nano-
structured bainite. Materials Characterizacion, 112214, Aug. 2022.
https://doi.org/10.1016/j.matchar.2022.112214
[30] Viafara, C. and Velez, J. Transformación bainítica en aleaciones Fe-C.
Ingeniería y Ciencia, v. 1, n. 2, pp. 83-96, Sep. 2005.
[31] Qiao, Z., Liu, Y., Yu, L. and Gao, Z. Formation mechanism of granular
bainite in a 30CrNi3MoV steel. Journal of Alloys and Compounds, v.
475, n. 1-2, pp. 560-564, May. 2009.
https://doi.org/10.1016/j.jallcom.2008.07.110
Bolaños-Bernal, S., received the Bs. Eng
in Mechanical Engineering in 2019, from
the Universidad Nacional de Colombia,
Bogotá, Colombia, and now Master
candidate degree in Project Management
from Universidad de Nebrija, Madrid,
España. Currently, he is a manufacturing
processes and materials engineering group
investigation member. His research interests include:
Mechanical Metallurgy, Mechanical Properties of Advanced
Materials and heat treatments.
ORCID: https://orcid.org/0000-0001-9183-071X