Scientia et Technica Año XXVIII, Vol. 28, No. 03, julio-septiembre de 2023. Universidad Tecnológica de Pereira
The duration of the run to obtain the models resulted in the least
weight of relative importance.
Machine learning algorithms are applied to obtain forecast
models for residential electricity consumption, using the
number of users, the average temperature, the CPI index, and
the saidi service quality index as explanatory variables.
According to the performance metrics for the evaluation of the
models, R
2
, RMSE, MAE and MAPE, the ANN model had the
best performance, followed by the K-NN model.
The models obtained were used to forecast energy
consumption for the second half of 2022. The models with the
previously mentioned error metrics were evaluated again,
resulting in the MLR model having the best performance in the
forecast phase with new data, followed by the TDR model.
It is recommended to develop a research to select the best
features for the forecast of electrical residential consumption
through a multicriteria methodology.
REFERENCES
[1]
L. L. Grigsby, Power Systems, Boca Raton, FL: CRC Press, 2007.
[2]
V. Gupta y S. Pal, “An Overview of Different Types of Load
Forecasting Methods and the Factors Affecting the Load Forecasting”,
International Journal for Research in Applied Science & Engineering
Technology, pp. 729-733, 2017.DOI:
http://doi.org/10.22214/ijraset.2017.4132.
[3]
Y. Badulescu, A.-P. Hameri y N. Cheikhrouhou, “Evaluating demand
forecasting models using multi-criteria decision-making approach”,
Journal of Advances in Management Research, pp. 2021. DOI:
https://doi.org/10.1108/JAMR-05-2020-0080
[4]
C. Deina, J. L. Ferreira dos Santos, L. H. Biuk, M. Lizot, A. Converti, H.
Valadares Siqueira y F. Trojan, “Forecasting Electricity Demand by
Neural Networks and Definition of Inputs by Multi-Criteria Analysis”,
Energies, p. 2023. DOI: https://doi.org/10.3390/en16041712.
[5]
J. V. Jales Melo, G. R. Soares Lira, E. G. Costa, A. F. Leite Neto y I. B.
Oliveira, “Short-Term Load Forecasting on Individual Consumers”,
Energies, p., 2022. DOI: https://doi.org/10.3390/en15165856.
[6]
S. Filipova-Petrakieva y V. Dochev, “Short-Term Forecasting of Hourly
Electricity Power Demand”, Engineering, Technology & Applied Science
Research - Reggresion and Cluster Methods for Short-Term Prognosis,
vol. 12, nº 2, pp. 8374-8381, 2022. DOI:
https://doi.org/10.48084/etasr.4787
[7]
G. P. Papaioannou, C. Dikaiakos, A. Dramountanis y P. G. Papaioannou,
“Analysis and Modeling for Short- to Medium-Term Load Forecasting
Using a Hybrid Manifold Learning Principal Component Model and
Comparison with Classical Statistical Models (SARIMAX, Exponential
Smoothing) and Artificial Intelligence Models (ANN, SVM): Th”, MDPI
energies, vol. 9, nº 8, 2016. DOI: https://doi.org/10.3390/es9080635
[8]
S. R. Khan, I. A. Hayder, S. u. Rehman Khan, M. A. Habib, M. Ahmad,
S. M. Mohsin, F. A. Khan y K. Mustafa, “Enhanced Machine-Learning
Techniques for Medium-Term and Short-Term Electric-Load Forecasting
in Smart Grids”, Energies, p, 2022. DOI:
https://doi.org/10.3390/en16010276.
[9]
P. Pełka, “Analysis and Forecasting of Monthly Electricity Demand Time
Series Using Pattern-Based Statistical Methods”, Energies, p, 2023. DOI:
https://doi.org/10.3390/en16020827.
[10]
M. A. Hammad, B. Jereb, B. Rosi y D. Dragan, “Methods and Models for
Electric Load Forecasting: A Comprehensive Review”, Logistics, Supply
Chain, Sustainability and Global Challenges, vol. 11, nº 1, pp. 51-76,
2020. DOI: https://doi.org/10.2478/jlst-2020-0004.
[11]
F. Eltarabishi, O. H. Omar, I. Alsyouf y M. Bettayeb, “Multi-Criteria
Decision Making Methods And Their Applications– A Literature
Review”, de Proceedings of the International Conference on Industrial
Engineering and Operations Management, Dubai, UAE, 2020.
[12]
J. VanderPlas, Python Data Science Handbook - Essential Tools for
Working with Data, Sebastopol, CA: O’Reilly Media, Inc., 2017.
[13]
D. Cielen, A. D. B. Meysman y M. Ali, Introducing Data Science, Shelter
Island, NY: Manning Publications Co., 2016.
[14]
Comisión Nacional de Energía de Chile, “Energía Abierta”, 01 Abril
2023. [En línea]. Available: http://energiaabierta.cl/categorias-
estadistica/electricidad/?sf_paged=2. [Último acceso: 16 July 2022].
[15]
C. Yajure Ramírez, “Uso de algoritmos de aprendizaje automático para
analizar datos de energía eléctrica facturada. Caso: Chile 2015 – 2021”,
Revista I+D Tecnológico, pp. 17-31, 2022. DOI:
https://doi.org/10.33412/idt.v18.2.3678.
[16]
Dirección General de Aeronáutica Civil de Chile, “DGAC CHILE”, 01
04 2023. [En línea]. Available:
https://climatologia.meteochile.gob.cl/application/informacion/fichaDeE
stacion/330020. [Último acceso: 01 12 2022].
[17]
Instituto Nacional de Estadísticas de Chile, “INE”, 01 04 2023. [En línea].
Available: https://www.ine.gob.cl/estadisticas/economia/indices-de-
precio-e-inflacion/indice-de-precios-al-consumidor. [Último acceso: 01
12 2022].
[18]
A. Navlani, A. Fandango y I. Idris, Python Data Analysis, Birmingham,
UK: Packt Publishing Ltd., 2021.
[19]
B. Ratner, Statistical and Machine-Learning Data Mining - Techniques
for Better Predictive Modeling and Analysis of Big Data, Boca Raton, FL:
CRC Press Taylor & Francis Group, 2017.
[20]
D. N. Gujarati y D. C. Porter, Econometría, México, D. F.: McGraw-
Hill/Interamericana Editores, S.A. DE C.V., 2010.
[21]
S. Makridakis, S. Wheelwright y R. Hyndman, Manual of Forecasting:
Methods and Applications, 1997.
[22]
A. Kapoor, A. Gulli y S. Pal, Deep Learning with TensorFlow and Keras,
Birmingham: Packt Publishing Ltd., 2022.
[23]
J. Moolayil, Learn Keras for Deep Neural Networks - A Fast-Track
Approach to Modern Deep Learning with Python, Vancouver, BC,
Canada: Apress, 2019. DOI: https://doi.org/10.1007/978-1-4842-4240 -7
[24]
F. Chollet, Deep Learning with Python, Shelter Island, NY: Manning
Publications Co., 2018.
[25]
J. Brownlee, Deep Learning With Python - Develop Deep Learning
Models On Theano And TensorFlow Using Keras, Melbourne, Australia:
Machine Learning Mastery, 2016.
[26]
J. Arnastauskaite, T. Ruzgas y M. Braženas, “An Exhaustive Power
Comparison of Normality Tests”, Mathematics, p. 2021. DOI:
https://doi.org/10.3390/math9070788.
[27]
M. E. Fenner, Machine Learning with Python for Everyone, Boston:
Pearson Education, Inc., 2020.
[28]
B. K. Gacar y İ. D. Kocakoç, “Regression Analyses or Decision Trees?”,
Manisa Celal Bayar University Journal of Social Sciences, pp. 251-260.
DOI: https://doi.org/10.18026/cbayarsos.796172
[29]
R. Muthukrishnan y M. Jamila. S, “Predictive Modeling Using Support
Vector Regression”, International Journal of Scientific & Technology
Research, pp. 4863-4865, 2020.
[30]
A. Ishizaka y P. Nemery, Multi-Criteria Decision Analysis - Methods and
Software, West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2013.
DOI: https://doi.org/10.1002/9781118644898
[31]
M. Velasquez y P. T. Hester, “An Analysis of Multi-Criteria Decision
Making Methods”, International Journal of Operations Research, pp. 56-
66, 2013.
http://www.orstw.org.tw/ijor/vol10no2/ijor_vol10_no2_p56_p66.pdf.
[32]
E. Triantaphyllou, B. Shu, S. Nieto Sanchez y T. Ray, “Multi-Criteria
Decision Making: An Operations Research Approach”, Encyclopedia of
Electrical and Electronics Engineering, pp. 175-186., 1998.
[33]
T. L. Saaty, “Decision making with the analytic hierarchy process”,
International Journal of Services Sciences, pp. 83-98, 2008. DOI:
https://dx.doi.org/10.1504/IJSSCI.2008.017590..
[34]
J. M. Moreno Jiménez, “El proceso analítico jerárquico (AHP).
Fundamentos, metodología, y aplicaciones.”, Revista Electrónica de
Comunicaciones y Trabajos de ASEPUMA, pp. 28-77, 2002.
[35]
B. Sahoo, R. N. Behera y P. K. Pattnaik, “A Comparative Analysis of
Multi-Criteria Decision Making Techniques for Ranking of Attributes for
e-Governance in India”, International Journal of Advanced Computer
Science and Applications, pp. 65-70, 2022. DOI:
https://dx.doi.org/10.14569/IJACSA.2022.0130311.
[36]
J. Papathanasiou y N. Ploskas, Multiple Criteria Decision Aid - Methods,
Examples and Python Implementations, Cham, Switzerland: Springer
Nature Switzerland AG, 2018. DOI: https://doi.org/10.1007/978-3-319-
91648-4