Interfaces naturales en la robótica: una revisión


Autores/as

DOI:

https://doi.org/10.22517/23447214.15941

Palabras clave:

Asistente quirúrgico, interfaces naturales de usuario, Kinect, Leap Motion, rehabilitación, robótica

Resumen

En este artículo se hace una revisión del uso de las Interfaces Naturales de Usuario (INU) empezando por el estudio de los dispositivos que permiten su uso y que son más comunes en el mercado y la investigación. Posteriormente se muestran algunos trabajos desarrollados para manipular robots industriales y permitir a los usuarios realizar trabajos concretos y complejos son ponerse en riesgo. Finalmente se hace un repaso de las amplias aplicaciones que las INU tienen en la medicina desde la asistencia en quirófanos hasta la rehabilitación. Se pretende mostrar que el estudio en este campo está vigente y puede ser de gran ayuda para diversos usuarios en varias aplicaciones, especialmente aquellas que generan un impacto social.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Manuel Sanin Benavides Piamba, Universidad del Cauca

Docente Universidad del Cauca en la facultad de Ingeniería electronica y Coordinador de Proyeccion Social en el departamento de Ingenieria de Sistemas de la Universidad de Unicomfacauca

Oscar Andrés Vivas Albán, Universidad del Cauca

Robótica Médica

Citas

[1] H.F. Vargas-Rosero, O.A Vivas-Albán. “Manipulación de robot quirúrgico mediante interfaz natural”. Revista Mexicana de Ingeniería Biomédica, Vol. 37, No.3, pp. 287–298, 2016.

[2] M. N. Kamel Boulos, et al. “Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation”. International Journal of Health Geographics, Vol. 10, No. 1, pp. 45, 2011.

[3] A.N Caicedo-Rosero, O.A Vivas-Albán, J. Londoño-Prieto, “Una revisión sobre los sistemas de rehabilitación de motricidad basados en juegos”, Journal de Ciencia e Ingeniería, Vol. 9, No. 1, pp. 24-33, 2017.

[4] D. Wigdor, D. Wixon. “Brave NUI World: Designing Natural User Interfaces for Touch and Gesture”, Morgan Kaufmann Publishers Inc. San Francisco, USA, 2011.

[5] K. Hinckley, D. Wigdor. “The Human- Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications”, Taylor & Francis. pp. 1-49. Boca Raton, Florida, USA, 2002.

[6] Leap Motion. Disponible https://www.leapmotion.com/. Acceso mayo de 2017.

[7] M. Mohandes, S. Aliyu,M. Deriche. “Arabic sign language recognition using the leap motion controller”. En Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. IEEE, 2014.

[8] Kinect para Xbox One. Disponible http://www.xbox.com/es CO/xboxone/accessories/kinect. Acceso mayo de 2017.

[9] Developing with Kinect for Windows. Disponible https://developer.microsoft.com/en us/windows/kinect/develop. Acceso mayo de 2017.

[10] Schlömer, Thomas, et al. "Gesture recognition with a Wii controller." Proceedings of the 2nd international conference on Tangible and embedded interaction. ACM, 2008.

[11] Wii. Disponible: https://www.nintendo.es/Wii/Accesorios/AccesoriosWii-Nintendo-Ib eacute-rica-626430.html. Acceso mayo de 2017.

[12] Asus Xtion Pro Live. Disponible: https://www.asus.com/es/3DSensor/Xtion_PRO_LIVE/. Acceso mayo de 2017.

[13] Intel RealSense. Disponible: http://www.intel.es/content/www/es/es/architecture andtechnology/realsense-overview.html. Acceso mayo de 2017.

[14] Intel RealSense Camera SR300-Series. Disponible: https://software.intel.com/en-us/realsense/home. Acceso mayo de 2017.

[15] Das, R., Kumar, K. B. S. “GeroSim: A simulation framework for gesture driven robotic arm control using Intel RealSense”. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, 2016.

[16] Huang, B., Bryson, J., Inamura, T. “Learning motion primitives of object manipulation using Mimesis Model”. 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013.

[17] Deng, H., Xia, Z., Weng, S., Gan, Y., Fang, P., & Xiong, J. “Motion sensing based framework for robot manipulation”. 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), 2016.

[18] Kim, H., et al. “Task-oriented teleoperation through natural 3D user interaction”. 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI. 2014.

[19] Du, G., Zhang, P. A Markerless Humanam-Robot Interface Using Particle

Filter and Kalman Filter for Dual Robots. IEEE Transactions on

Industrial Electronics, Vol. 62, No.4, pp. 2257–2264, 2015.

[20] Phamduy, P., Debellis, M., & Porfiri, M. "Controlling a robotic fish via a

natural user interface for informal science education". IEEE Transactions

on Multimedia, Vol. 17 No.12, pp. 2328–2337, 2015.

[21] VELASCO, Maria Cristina Chaparro; ALBÁN, Óscar Andrés Vivas.

“Robótica quirúrgica, desde los grandes asistentes hasta la

nanotecnología”. Scientia et technica, 2016, vol. 21, no 2, p. 182-190.

[22] Vargas, H. F., Vivas, O. A. “Gesture recognition system for surgical

robot’s manipulation”. 19th Symposium on Image, Signal Processing and

Artificial Vision, STSIVA 2014. 2014.

[23] Juanes, Juan A., et al. "Practical applications of movement control

technology in the acquisition of clinical skills." Proceedings of the 3rd

International Conference on Technological Ecosystems for Enhancing

Multiculturality. ACM. 2015.

[24] Tian, Z. Cabrera, M.E, Wach, J.P. "Touchless telerobotic surgery-is it

possible at all?" AAAI. 2015.

[25] Ramos, D.R, Salinas S.A. "Simuladores virtuales para entrenamiento de habilidades para laparoscopia/VIRTUAL SIMULATORS FOR LAPAROSCOPIC SKILLS TRAINING/SIMULADORES VIRTUAIS PARA LAPAROSCOPIC SKILLS TRAINING." Revista Ingeniería Biomédica. Vol. 10, No. 19 pp.45, 2016.

[26] Zhou, T., Cabrera, M. E., Wachs, J. P. Touchless telerobotic surgery-is it possible at all? In AAAI. Pp. 4228-4230, 2015.

[27] Jacob, M., Li, Y. T., Akingba, G., Wachs, J. P. “Gestonurse: A robotic surgical nurse for handling surgical instruments in the operating room.” Journal of Robotic Surgery, Vol. 6, No.1, pp. 53–63, 2012.

[28] Collumeau, J. F., Nespoulous, E., Laurent, H., & Magnain, B. “Simulation interface for gesture-based remote control of a surgical lighting arm.” Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013.

[29] Bassily, D., Georgoulas, C., Güttler, J., Linner, T., Bock, T., München, T.

U. “Intuitive and adaptive robotic arm manipulation using the leap motion

controller”. Isr Robotik, 78–84, 2014.

[30] Açık, A., Barkana, D. E., Akgün, G., Yantaç, A. E., Aydın, Ç. "Evaluation of a surgical interface for robotic cryoablation task using an eye-tracking system". International Journal of Human Computer Studies, Vol. 95, pp. 39–53, 2016.

[31] GUZMÁN, D. E.; LONDOÑO, J. Rehabilitación de miembro superior con ambientes virtuales: revisión. Revista Mexicana de Ingeniería Biomédica, 2016, vol. 37, no 3, p. 271-285.

[32] M. Holden, “Virtual environments for motor rehabilitation: Review”, Cyberpsychology & Behavior, Vol. 8, No. 3, pp. 187–211, 2005.

[33] G. Burdea, “Key Note Address: Virtual Rehabilitation-Benefits and Challenges”. First International Workshop on Virtual Rehabilitation, 2002.

[34] H. Sveistrup, “Motor rehabilitation using virtual reality,” Journal of Neuro Engineering and Rehabilitation, pp. 1–8, 2004.

[35] L. Mundy and J. Hiller, “Rehabilitation of stroke patients using virtual reality games", Australia and New Zealand Horizon Scanning Network. Prioritizing Summary, vol. 27, Junio 2010.

[36] Rego, P., Moreira, P.M., Reis, L.P.: “Serious games for rehabilitation: A survey and a classification towards a taxonomy”. In: 5th Iberian Conference on Information Systems and Technologies (CISTI), pp.1-6. IEEE Press, New York (2010).

[37] REGO, Paula Alexandra; MOREIRA, Pedro Miguel; REIS, Luís Paulo. “Natural user interfaces in serious games for rehabilitation”. En Information Systems and Technologies (CISTI), 2011 6th Iberian Conference on. IEEE, 2011. p. 1-4.

[38] MADEIRA, Rui Neves; COSTA, Luís; POSTOLACHE, Octavian. “PhysioMate-Pervasive physical rehabilitation based on NUI and gamification”. En Electrical and Power Engineering (EPE), 2014 International Conference and Exposition on. IEEE, 2014. p. 612-616.

[39] LOZANO-QUILIS, Jose-Antonio, et al. “Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial”. JMIR serious games, 2014, vol. 2, no 2, p. e12.

[40] MADEIRA, Rui Neves; ANTUNES, André; POSTOLACHE, Octavian. “Just Physio kidding: NUI and Gamification based Therapeutic Intervention for Children with Special Needs”. En 6th EAI International Symposium on Pervasive Computing Paradigms for Mental Health. 2016.

[41] MUÑOZ, J. E., et al. “Multimodal system for rehabilitation aids using

videogames”. En Central America and Panama Convention (CONCAPAN XXXIV), 2014 IEEE. IEEE, 2014. p. 1-7.

[42] DUARTE, Nuno; POSTOLACHE, Octavian; SCHARCANSKI, Jacob. “KSGphysio-Kinect serious game for physiotherapy”. En Electrical and Power Engineering (EPE), 2014 International Conference and Exposition on. IEEE, 2014. p. 606-611.

[43] ANACLETO, Junia, et al. “Therapist-centred design of NUI based therapies in a neurological care hospital”. En Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. IEEE, 2012.

p. 2318-2323.

[44] CHANG, Chien-Yen, et al. “Towards pervasive physical rehabilitation

using Microsoft Kinect”. En Pervasive Computing Technologies for

Healthcare (PervasiveHealth), 2012 6th International Conference on.

IEEE, 2012. p. 159-162.

[45] SAPOSNIK, Gustavo, et al. “Effectiveness of virtual reality using Wii

gaming technology in stroke rehabilitation”. Stroke, 2010, vol. 41, no 7,

p. 1477-1484.

[46] CHO, Ki Hun; LEE, Kyoung Jin; SONG, Chang Ho. “Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients”. The Tohoku journal of experimental medicine,

, vol. 228, no 1, p. 69-74.

[47] CARGNIN, Diego João; D'ORNELLAS, Marcos Cordeiro; PRADO, Ana Lúcia Cervi. “A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training”. En MedInfo. 2015. p. 348-352.

[48] WUANG, Yee-Pay, et al. “Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome”. Research in developmental disabilities, 2011, vol. 32, no 1, p. 312-321.

[49] VIEGAS, Vítor, et al. “NUI therapeutic serious games with metrics validation based on wearable devices”. En Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 2016 IEEE International. IEEE, 2016. p. 1-6.

[50] SVEISTRUP, Heidi. “Motor rehabilitation using virtual reality”. Journal

of neuroengineering and rehabilitation, 2004, vol. 1, no 1, p. 10.

POOL, Sean M., et al. “Navigation of a virtual exercise environment with

Microsoft Kinect by people post-stroke or with cerebral palsy”. Assistive

Technology, 2016, vol. 28, no 4, p. 225-232.

Descargas

Publicado

2018-03-30

Cómo citar

Benavides Piamba, M. S., & Vivas Albán, O. A. (2018). Interfaces naturales en la robótica: una revisión. Scientia Et Technica, 23(1), 112–118. https://doi.org/10.22517/23447214.15941

Número

Sección

Bioingeniería