Isodeformation curves of the extraocular muscles from the inverse kinematics of a cable-driven parallel kinematics mechanism model of the eye


Autores/as

  • Carlos Andrés Trujillo Suárez UNIVERSIDAD DE ANTIOQUIA

DOI:

https://doi.org/10.22517/23447214.18331

Palabras clave:

Extraocular muscles, inverse kinematics, isodeformation curves.

Resumen

A mechanical model of the eye considering it as a cable-driven parallel kinematics mechanism is proposed. The inverse kinematics of the eye is carried out and the
isodeformation curves of the extraocular muscles are obtained. The results agree with those previously reported by other, more complex, analytical approaches and with physiological measurements. This effort is a contribution to the modeling of
the kinematics of the eye from the standpoint of robotics and mechanism theory and it could be used in eye movement studies to explore brain function. This work may support the neurologically-constrained argument for the positioning of the
eye.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Andrés Trujillo Suárez, UNIVERSIDAD DE ANTIOQUIA

Profesor Departamento de Ingeniería Mecánica

Citas

[1]. Tweed D, Vilis T. “Geometric relations of eye position and velocity vectors during saccades”. Vision Research, 30(1), pp. 111–127, 1990.

[2]. Bolina O, Monteiro L. “Kinematics of eye movement”. Ophthalmic and Physiological Optics, 20(1), pp. 59–62, 2000.

[3]. Skalicky SE. “Movements of the eye”. In: Ocular and

Visual Physiology. Springer; 2016, pp. 243–249.

[4]. Wright KW. “Anatomy and physiology of eye movements”. In: Pediatric Ophthalmology and Strabismus. Springer; 2003, pp. 125–143.

[5]. Angelaki DE. “Three-dimensional ocular kinematics during eccentric rotations: evidence for functional rather than mechanical constraints”. Journal of Neurophysiology, 89(5), pp. 2685–2696, 2003.

[6]. Crawford J, Martinez-Trujillo J, Klier E. “Neural control of three-dimensional eye and head movements”. Current Opinion in Neurobiology, 13(6), pp. 655–662, 2003.

[7]. Demer JL. “Current concepts of mechanical and neural factors in ocular motility”. Current Opinion in Neurology, 19(1), pp. 4–13, 2006.

[8]. Haslwanter T. “Mathematics of three-dimensional eye rotations”. Vision Research, 35(12), pp. 1727–1739, 1995.

[9]. Bayro-Corrochano E. “Modeling the 3D kinematics of the eye in the geometric algebra framework”. Pattern Recognition, 36(12), pp. 2993–3012, 2003.

[10]. Cannata G, Maggiali M. “Models for the design of bioinspired robot eyes”. IEEE Transactions on Robotics, 24(1), pp. 27–44, 2008.

[11]. Wang XY, Zhang Y, Fu XJ, Xiang GS. “Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles”. Journal of Bionic Engineering, 5(3), pp. 264–270, 2008.

[12]. Boeder P. “Co-operative action of extraocular

muscles”. The British Journal of Ophthalmology, 46(7),

pp. 397–403, 1962.

[13]. Robinson DA. “A quantitative analysis of extraocular muscle cooperation and squint”. Investigative Ophthalmology & Visual Science, 14(11), pp. 801–825, 1975.

[14]. Miller J, Pavlovski D, Shaemeva I. Orbit 1.8 Gaze Mechanics Simulation - User’s Manual. San Francisco: Eidactics, 1999. URL: http://www.eidactics.com/projects/ooi; (retrieved Jan.

, 2019).

[15]. Wei Q, Sueda S, Pai DK. “Physically-based

modeling and simulation of extraocular muscles”. Progress in Biophysics and Molecular Biology, 103(2), pp. 273–283, 2010.

[16]. Karami A, Eghtesad M. “Simulation of active eye motion using finite element modelling”. Latin American Journal of Solids and Structures, 15(3), e24. Epub May 14, 2018.

[17]. Merlet JP. Parallel Robots. 2nd ed., The Netherlands: Springer, 2006.

[18]. Shaikh A, Zee D. “Eye movement research in the

twenty-first century—a window to the brain, mind, and more”. The Cerebellum, 17(3), pp. 252–258, 2018.

[19]. Krewson 3rd WE. “The action of the extraocular muscles: a method of vector analysis with computations”. Transactions of the American Ophthalmological Society, 48, pp. 443–486, 1950.

[20]. Bottema O, Roth B. Theoretical Kinematics, New York: North-Holland Publ. Co, 1979.

[21]. McCarthy JM. Introduction to Theoretical Kinematics. MIT press, 1990.

[22]. Kono R, Clark RA, Demer JL. “Active pulleys:

magnetic resonance imaging of rectus muscle paths in

tertiary gazes”. Investigative Ophthalmology & Visual

Science, 43(7), pp. 2179–2188, 2002.

[23]. Ananthasuresh G. “How far are compliant mechanisms from rigid body mechanisms and stiff structures?” In: Advances in Mechanisms, Robotics and Scientia et Technica Año XXIII, Vol. 23, No. 04, diciembre de 2018. Universidad Tecnológica de Pereira. 612 Design Education and Research, Springer; 2013, pp. 83–

[24]. Howell LL, Ananthasuresh G. “Cases studies and a note on the degrees of freedom in compliant mechanisms”. In: Proceedings of the 1996 ASME Design

Engineering Technical Conferences and Computers in Engineering Conference, pp. 18–22, August, 1996.

[25]. Murphy M,Midha A, Howell LL. “On the mobility of compliant mechanisms”. In: Proceedings of the 1994 ASME Design Technical Conferences, pp. 475–479.

[26]. Howell LL, Midha A. “A method for the design of compliant mechanisms with small-length flexural pivots”. ASME Journal of Mechanical Design , 116(1), pp. 280–290, 1994.

[27]. Hepp K, Henn V. “Isofrequency curves of oculomotor neurons in the rhesus monkey”. Vision Research, 25(4), pp. 493–499, 1985.

[28]. Piccirelli M, Luechinger R, Rutz AK, Boesiger P, Bergamin O. “Extraocular muscle deformation assessed by motion-encoded MRI during eye movement in healthy subjects”. Journal of Vision, 7(14), pp. 1–10, 2007.

Descargas

Publicado

2018-12-30

Cómo citar

Trujillo Suárez, C. A. (2018). Isodeformation curves of the extraocular muscles from the inverse kinematics of a cable-driven parallel kinematics mechanism model of the eye . Scientia Et Technica, 23(4), 606–612. https://doi.org/10.22517/23447214.18331

Número

Sección

Bioingeniería