Robótica en cirugía y neurocirugía, aplicaciones y desafíos, una revisión
DOI:
https://doi.org/10.22517/23447214.21131Palabras clave:
neurocirugía robótica, neuronavegación, realimentación háptica.Resumen
La integración de robots en los quirófanos plantea mejorar el desempeño y eficiencia de variados procedimientos, dado que ofrece ventajas destacables sobre los procedimientos convencionales, en particular la precisión, el filtrado de temblor de mano y la posibilidad de ejecución de tareas complejas, sin embargo, aún prevalecen considerables desafíos que afectan la masificación y la maniobrabilidad por parte de los cirujanos. En el presente trabajo se realiza una revisión del estado actual de la cirugía robótica, los retos y las tendencias. En concreto se evidencia la necesidad de mecanismos de realimentación de fuerza óptimos, así como la visualización dinámica mediante realidad aumentada o realidad virtual. Aun no es posible determinar que la cirugía robótica ha alcanzado estándares, sin embargo, la integración de tecnologías alternas permitirá mejorar no solo la eficiencia en cuanto al robot sino respecto de su operación por parte de los cirujanos.
Descargas
Citas
A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, "Robotic Surgery," Annals of Surgery, vol. 239, no. 1, pp. 14-21, Jan. 2004, DOI: 10.1097/01.sla.0000103020.19595.7d.
https://doi.org/10.1097/01.sla.0000103020.19595.7d
B. Singh and N. Sellappan, "Evolution of Industrial Robots and their Applications," vol. 3, no. 5, p. 6, May 2013. ISSN: 2250-2459.
F. Chen, J. Liu, and H. Liao, "Image Guided and Robot Assisted Precision Surgery," in Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging, K. Suzuki and Y. Chen, Eds. Cham: Springer International Publishing, 2018, pp. 361-387. DOI: 10.1007/978-3-319-68843-5-13
https://doi.org/10.1007/978-3-319-68843-5_13
X. Le et al., "Robot-Assisted Versus Fluoroscopy-Assisted Cortical Bone Trajectory Screw Instrumentation in Lumbar Spinal Surgery: A Matched-Cohort Comparison," World Neurosurgery, vol. 120, pp. e745-e751, Dec. 2018, DOI: 10.1016/j.wneu.2018.08.157.
https://doi.org/10.1016/j.wneu.2018.08.157
A. Khan et al., "Comparing Next-Generation Robotic Technology with 3-Dimensional Computed Tomography Navigation Technology for the Insertion of Posterior Pedicle Screws," World Neurosurgery, Nov. 2018, DOI: 10.1016/j.wneu.2018.11.190.
https://doi.org/10.1016/j.wneu.2018.11.190
S. Nicolaidis, "Neurosurgery of the future: Deep brain stimulations and manipulations," Metabolism, vol. 69, pp. S16-S20, Apr. 2017, DOI: 10.1016/j.metabol.2017.01.013.
https://doi.org/10.1016/j.metabol.2017.01.013
R. Nuzzi and L. Brusasco, "State of the art of robotic surgery related to vision: brain and eye applications of newly available devices," Eye Brain, vol. 10, pp. 13-24, Feb. 2018, DOI: 10.2147/EB.S148644.
https://doi.org/10.2147/EB.S148644
P. Dupont et al., "Concentric tube robots for minimally invasive surgery," Neurosurgery, vol. 7, Jan. 2012.
M. A. Mashagbeh and M. B. Khamesee, "Unilateral Teleoperated Master-Slave System for Medical Applications," IFAC-PapersOnLine, vol. 48, no. 3, pp. 784-787, Jan. 2015, DOI: 10.1016/j.ifacol.2015.06.178.
https://doi.org/10.1016/j.ifacol.2015.06.178
E. Bauzano, A. Fernández Iríbar, C. López-Casado, J. Klein, A. Renteria, and V. Muñoz-Martinez, "Integración de Dispositivos en un Robot Quirúrgico Teleoperado mediante ROS," presented at the Conference: Conference: XXXVI Jornadas de Automática, Bilbao, España, 2015. ISBN: 978-84-15914-12-9.
J. Sandoval, H. Su, P. Vieyres, G. Poisson, G. Ferrigno, and E. De Momi, "Collaborative framework for robot-assisted minimally invasive surgery using a 7-DoF anthropomorphic robot," Robotics and Autonomous Systems, vol. 106, pp. 95-106, Aug. 2018, DOI: 10.1016/j.robot.2018.04.001.
https://doi.org/10.1016/j.robot.2018.04.001
D. Chow and W. Newman, "Improved knot-tying methods for autonomous robot surgery," in 2013 IEEE International Conference on Automation Science and Engineering (CASE), 2013, pp. 461-465, DOI: 10.1109/CoASE.2013.6653955.
https://doi.org/10.1109/CoASE.2013.6653955
A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, and P. C. W. Kim, "Supervised autonomous robotic soft tissue surgery," Science Translational Medicine, vol. 8, no. 337, pp. 64-73, May 2016, DOI: 10.1126/scitranslmed.aad9398.
https://doi.org/10.1126/scitranslmed.aad9398
S. Nishihara et al., "Clinical accuracy evaluation of femoral canal preparation using the ROBODOC system," Journal of Orthopaedic Science, vol. 9, no. 5, pp. 452-461, Sep. 2004, DOI: 10.1007/s00776-004-0804-5.
https://doi.org/10.1007/s00776-004-0804-5
"Mazor Robotics USA," Mazor Robotics. [Online]. Available: https://www.mazorrobotics.com/en-us/. [Accessed: 24-Jan-2019].
"Hansen Medical - Auris Health." [Online]. Available: https://www.aurishealth.com/hansen-medical.html. [Accessed: 24-Jan-2019].
"CyberKnife System from Accuray." [Online]. Available: https://www.accuray.com/cyberknife/. [Accessed: 24-Jan-2019].
"The ARTAS Robotic System | Restoration Robotics." [Online]. Available: https://artas.com/physicians/. [Accessed: 24-Jan-2019].
J. Y. K. Chan et al., "Foot-controlled robotic-enabled endoscope holder for endoscopic sinus surgery: A cadaveric feasibility study," Laryngoscope, vol. 126, no. 3, pp. 566-569, Mar. 2016, DOI: 10.1002/lary.25634.
https://doi.org/10.1002/lary.25634
T. Ogiwara, T. Goto, A. Nagm, and K. Hongo, "Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot: initial experience in 43 patients," Neurosurgical Focus, vol. 42, no. 5, p. E10, May 2017, DOI: 10.3171/2017.3.FOCUS16498.
https://doi.org/10.3171/2017.3.FOCUS16498
C. Hennersperger et al., "Towards MRI-Based Autonomous Robotic US Acquisitions: A First Feasibility Study," IEEE Transactions on Medical Imaging, vol. PP, Jul. 2016, DOI: 10.1109/TMI.2016.2620723.
https://doi.org/10.1109/TMI.2016.2620723
S. R. Dutta, D. Passi, S. Sharma, and P. Singh, "Transoral robotic surgery: A contemporary cure for future maxillofacial surgery," Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, vol. 28, no. 4, pp. 290-303, 2016, DOI: 10.1016/j.ajoms.2016.03.002.
https://doi.org/10.1016/j.ajoms.2016.03.002
C.-L. Lee, K.-Y. Wu, H. Su, C.-M. Han, C.-Y. Huang, and C.-F. Yen, "Robot-assisted natural orifice transluminal endoscopic surgery for hysterectomy," Taiwanese Journal of Obstetrics and Gynecology, vol. 54, no. 6, pp. 761-765, Dec. 2015, DOI: 10.1016/j.tjog.2015.08.023.
https://doi.org/10.1016/j.tjog.2015.08.023
H. Poon, C. Li, W. Gao, H. Ren, and C. M. Lim, "Evolution of robotic systems for transoral head and neck surgery," Oral Oncology, vol. 87, pp. 82-88, Dec. 2018, DOI: 10.1016/j.oraloncology.2018.10.020.
https://doi.org/10.1016/j.oraloncology.2018.10.020
J. Kaouk, J. Garisto, M. Eltemamy, and R. Bertolo, "Pure Single-Site Robot-Assisted Partial Nephrectomy Using the SP Surgical System: Initial Clinical Experience," Urology, Nov. 2018, DOI: 10.1016/j.urology.2018.11.024.
https://doi.org/10.1016/j.urology.2018.11.024
Z. Wang, Z. Sun, and S. J. Phee, "Haptic feedback and control of a flexible surgical endoscopic robot," Comput Methods Programs Biomed, vol. 112, no. 2, pp. 260-271, Nov. 2013, DOI: 10.1016/j.cmpb.2013.01.018.
https://doi.org/10.1016/j.cmpb.2013.01.018
A. Nakazawa et al., "Feedback methods for collision avoidance using virtual fixtures for robotic neurosurgery in deep and narrow spaces," presented at the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, pp. 247-252, DOI: 10.1109/BIOROB.2016.7523632.
https://doi.org/10.1109/BIOROB.2016.7523632
J. J. Doulgeris, S. A. Gonzalez-Blohm, A. K. Filis, T. M. Shea, K. Aghayev, and F. D. Vrionis, "Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises," Cancer Control, vol. 22, no. 3, pp. 352-359, Jul. 2015, DOI: 10.1177/107327481502200314.
https://doi.org/10.1177/107327481502200314
A. J. Hung, J. Chen, A. Shah, and I. S. Gill, "Telementoring and Telesurgery for Minimally Invasive Procedures," The Journal of Urology, vol. 199, no. 2, pp. 355-369, Feb. 2018, DOI: 10.1016/j.juro.2017.06.082.
https://doi.org/10.1016/j.juro.2017.06.082
F. Amirabdollahian et al., "Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature," Journal of Robotic Surgery, vol. 12, no. 1, pp. 11-25, Mar. 2018, DOI: 10.1007/s11701-017-0763-4.
https://doi.org/10.1007/s11701-017-0763-4
G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi, "Feedback Control of Soft Robot Actuators via Commercial Flex Bend Sensors," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1881-1888, Aug. 2017, DOI: 10.1109/TMECH.2017.2699677.
https://doi.org/10.1109/TMECH.2017.2699677
Y. Maddahi, L. S. Gan, K. Zareinia, S. Lama, N. Sepehri, and G. R. Sutherland, "Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery," The international journal of medical robotics, vol. 12, no. 3, pp. 528-537, Sep. 2016, DOI: 10.1002/rcs.1679.
https://doi.org/10.1002/rcs.1679
L. Xiong, G. Jiang, Y. Guo, and H. Liu, "A Three-Dimensional Fiber Bragg Grating Force Sensor for Robot," IEEE Sensors Journal, vol. 18, no. 9, pp. 3632-3639, May 2018, DOI: 10.1109/JSEN.2018.2812820.
https://doi.org/10.1109/JSEN.2018.2812820
P. C. Ashok, M. E. Giardini, K. Dholakia, and W. Sibbett, "A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics," Journal of Biophotonics, vol. 7, no. 1-2, pp. 103-109, 2014, DOI: 10.1002/jbio.201300034.
https://doi.org/10.1002/jbio.201300034
S. Mascharak, B. J. Baird, and F. C. Holsinger, "Detecting oropharyngeal carcinoma using multispectral, narrow-band imaging and machine learning," Laryngoscope, vol. 128, no. 11, pp. 2514-2520, Nov. 2018, DOI: 10.1002/lary.27159.
https://doi.org/10.1002/lary.27159
C. Hatzfeld and R. Werthschützky, "Vibrotactile Force Perception Thresholds at the Fingertip," in Haptics: Generating and Perceiving Tangible Sensations, Springer, Berlin, Heidelberg, 2010, vol. 6191, pp. 99-104, DOI: 10.1007/978-3-642-14064-8_15
https://doi.org/10.1007/978-3-642-14064-8_15
K. J Kuchenbecker, J. Gewirtz, W. Mcmahan, D. Standish, P. J Mendoza, and D. Lee, "VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery," International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, vol. 6191, Springer, Berlin, Heidelberg 2010, DOI: 10.1007/978-3-642-14064-8_28
https://doi.org/10.1007/978-3-642-14064-8_28
A. I. Aviles, S. M. Alsaleh, and A. Casals, "Sight to touch: 3D diffeomorphic deformation recovery with mixture components for perceiving forces in robotic-assisted surgery," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 160-165, DOI: 10.1109/IROS.2017.8202152.
https://doi.org/10.1109/IROS.2017.8202152
T. Duente, M. Pfeiffer, and M. Rohs, "Zap++: a 20-channel electrical muscle stimulation system for fine-grained wearable force feedback," presented at the MobileHCI '17 Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, Vienna, Austria, 2017, pp. 1-13, DOI: 10.1145/3098279.3098546.
https://doi.org/10.1145/3098279.3098546
H. Chinbe, T. Yoneyama, T. Watanabe, K. Miyashita, and M. Nakada, "Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection," International Journal of Computer Assisted Radiology and Surgery, vol. 13, Jul. 2017, DOI: 10.1007/s11548-017-1640-3.
https://doi.org/10.1007/s11548-017-1640-3
C. Pacchierotti, L. Meli, F. Chinello, M. Malvezzi, and D. Prattichizzo, "Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems," The International Journal of Robotics Research, vol. 34, no. 14, pp. 1773-1787, Dec. 2015, DOI: 10.1177/0278364915603135.
https://doi.org/10.1177/0278364915603135
D. Tsetserukou, S. Hosokawa, and K. Terashima, "LinkTouch: A wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad," in 2014 IEEE Haptics Symposium (HAPTICS), 2014, pp. 307-312, DOI: 10.1109/HAPTICS.2014.6775473.
https://doi.org/10.1109/HAPTICS.2014.6775473
A. Girard, M. Marchal, F. Gosselin, A. Chabrier, F. Louveau, and A. Lécuyer, "HapTip: Displaying Haptic Shear Forces at the Fingertips for Multi-Finger Interaction in Virtual Environments," Front. ICT, vol. 3, 2016, DOI: 10.3389/fict.2016.00006.
https://doi.org/10.3389/fict.2016.00006
H. J. Marcus, C. A. Seneci, C. J. Payne, D. Nandi, A. Darzi, and G.-Z. Yang, "Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms," Neurosurgery, vol. 10 Suppl 1, pp. 84-95, Mar. 2014, DOI: 10.1227/NEU.0000000000000123.
https://doi.org/10.1227/NEU.0000000000000123
D. M. Dalgorf et al., "Image-guided surgery influences perioperative morbidity from endoscopic sinus surgery: a systematic review and meta-analysis," Otolaryngol Head Neck Surg, vol. 149, no. 1, pp. 17-29, Jul. 2013, DOI: 10.1177/0194599813488519.
https://doi.org/10.1177/0194599813488519
"MedicalExpo e-Magazine - Simulators Guide 21st-Century Robotic Surgery Training - MedicalExpo e-Magazine." [Online]. Available: http://emag.medicalexpo.com/article-long/a-video-game-to-train-robotic-surgeons/. [Accessed: 04-Jan-2019].
M. Alaker, G. R. Wynn, and T. Arulampalam, "Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis," International Journal of Surgery, vol. 29, pp. 85-94, May 2016, DOI: 10.1016/j.ijsu.2016.03.034.
https://doi.org/10.1016/j.ijsu.2016.03.034
C. Zheng et al., "Development of a virtual reality preoperative planning system for post-lateral endoscopic lumbar discectomy surgery and its clinical application," World Neurosurg, Aug. 2018, DOI: 10.1016/j.wneu.2018.08.082.
https://doi.org/10.1016/j.wneu.2018.08.082
"Doctors Using VR To Aid In Neurosurgery 'Is A No-Brainer,'" UploadVR, 28-Aug-2016. [Online]. Available: https://uploadvr.com/surgical-theater-neurosurgeons/. [Accessed: 04-Jan-2019].
T. Mazur, T. R. Mansour, L. Mugge, and A. Medhkour, "Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review," World Neurosurgery, vol. 110, pp. 414-422, Feb. 2018, DOI: 10.1016/j.wneu.2017.11.132.
https://doi.org/10.1016/j.wneu.2017.11.132
A. Alaraj et al., "Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training," Neurosurgery, vol. 72 Suppl 1, pp. 115-123, Jan. 2013, DOI: 10.1227/NEU.0b013e3182753093.
https://doi.org/10.1227/NEU.0b013e3182753093
S. de Ribaupierre and R. Eagleson, "Editorial: Challenges for the usability of AR and VR for clinical neurosurgical procedures," Healthcare Technology Letters, vol. 4, no. 5, p. 151, Oct. 2017, DOI: 10.1049/htl.2017.0077.
https://doi.org/10.1049/htl.2017.0077
P. Pessaux, M. Diana, L. Soler, T. Piardi, D. Mutter, and J. Marescaux, "Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance," Surgical Endoscopy, vol. 28, no. 8, pp. 2493-2498, Aug. 2014, DOI: 10.1007/s00464-014-3465-2.
https://doi.org/10.1007/s00464-014-3465-2
Q. Shan, T. E. Doyle, R. Samavi, and M. Al-Rei, "Augmented Reality Based Brain Tumor 3D Visualization," Procedia Computer Science, vol. 113, pp. 400-407, Jan. 2017, DOI: 10.1016/j.procs.2017.08.356.
https://doi.org/10.1016/j.procs.2017.08.356
W. O. Contreras López, P. A. Navarro, and S. Crispin, "Intraoperative clinical application of augmented reality in neurosurgery: A systematic review," Clinical Neurology and Neurosurgery, vol. 177, pp. 6-11, Feb. 2019, DOI: 10.1016/j.clineuro.2018.11.018.
https://doi.org/10.1016/j.clineuro.2018.11.018
M. J. Citardi, W. Yao, and A. Luong, "Next-Generation Surgical Navigation Systems in Sinus and Skull Base Surgery," Otolaryngologic Clinics of North America, vol. 50, no. 3, pp. 617-632, Jun. 2017, DOI: 10.1016/j.otc.2017.01.012.
https://doi.org/10.1016/j.otc.2017.01.012
C. Moro, Z. Štromberga, A. Raikos, and A. Stirling, "The effectiveness of virtual and augmented reality in health sciences and medical anatomy," Anatomical Sciences Education, vol. 10, no. 6, pp. 549-559, Nov. 2017, DOI: 10.1002/ase.1696.
https://doi.org/10.1002/ase.1696
X. Hu and H. Hua, "An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly correct focus cues," in Stereoscopic Displays and Applications XXIV, 2013, vol. 8648, p. 86481A, DOI: 10.1117/12.2005117.
https://doi.org/10.1117/12.2005117
E. Watanabe, M. Satoh, T. Konno, M. Hirai, and T. Yamaguchi, "The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality," World Neurosurg, vol. 87, pp. 399-405, Mar. 2016, DOI: 10.1016/j.wneu.2015.11.084.
https://doi.org/10.1016/j.wneu.2015.11.084
D. Guha, N. M. Alotaibi, N. Nguyen, S. Gupta, C. McFaul, and V. X. D. Yang, "Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications," The Canadian Journal of Neurological, vol. 44, no. 3, pp. 235-245, May 2017, DOI: 10.1017/cjn.2016.443.
https://doi.org/10.1017/cjn.2016.443
A. Vovk, F. Wild, W. Guest, and T. Kuula, "Simulator Sickness in Augmented Reality Training Using the Microsoft HoloLens," in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2018, pp. 209:1-209:9, DOI: 10.1145/3173574.3173783.
https://doi.org/10.1145/3173574.3173783
R. Frikha, R. Ejbali, and M. Zaied, "Handling occlusion in Augmented Reality surgical training based instrument tracking," in 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), 2016, pp. 1-5, DOI: 10.1109/AICCSA.2016.7945729.
https://doi.org/10.1109/AICCSA.2016.7945729
M. N. Huda, H. Yu, and S. Cang, "Robots for minimally invasive diagnosis and intervention," Robotics and Computer-Integrated Manufacturing, vol. 41, pp. 127-144, Oct. 2016, DOI: 10.1016/j.rcim.2016.03.003.
https://doi.org/10.1016/j.rcim.2016.03.003
M. Scholz, R. Parvin, J. Thissen, C. Löhnert, A. Harders, and K. Blaeser, "Skull base approaches in neurosurgery," Head & Neck Oncology, vol. 2, p. 16, Jul. 2010, DOI: 10.1186/1758-3284-2-16.
https://doi.org/10.1186/1758-3284-2-16
A. Finegersh, F. C. Holsinger, N. D. Gross, and R. K. Orosco, "Robotic Head and Neck Surgery," Surgical Oncology Clinics of North America, vol. 28, no. 1, pp. 115-128, Jan. 2019, DOI: 10.1016/j.soc.2018.07.008.
https://doi.org/10.1016/j.soc.2018.07.008
V. Bagga and D. Bhattacharyya, "Robotics in neurosurgery," The Annals of The Royal College of Surgeons of England, vol. 100, no. 6_sup, pp. 23-26, May 2018, DOI: 10.1308/rcsann.supp1.19.
https://doi.org/10.1308/rcsann.supp1.19
H. Ashrafian, O. Clancy, V. Grover, and A. Darzi, "The evolution of robotic surgery: surgical and anaesthetic aspects," British Journal of Anaesthesia, vol. 119, pp. i72-i84, Dec. 2017, DOI: 10.1093/bja/aex383.
https://doi.org/10.1093/bja/aex383
"Cirugía Estereotáctica - EcuRed." [Online]. Available: https://www.ecured.cu/Cirug%C3%ADa_Estereot%C3%A1ctica. [Accessed: 04-Jan-2019].
G. Minchev et al., "A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot," Journal of Neurosurgery, vol. 126, no. 3, pp. 985-996, Mar. 2017, DOI: 10.3171/2016.1.JNS152005.
https://doi.org/10.3171/2016.1.JNS152005
Z. Guo, M. C.-W. Leong, H. Su, K.-W. Kwok, D. T.-M. Chan, and W.-S. Poon, "Techniques for Stereotactic Neurosurgery: Beyond the Frame, Toward the Intraoperative Magnetic Resonance Imaging-Guided and Robot-Assisted Approaches," World Neurosurg, vol. 116, pp. 77-87, Aug. 2018, DOI: 10.1016/j.wneu.2018.04.155.
https://doi.org/10.1016/j.wneu.2018.04.155
L. Puy, M. Tir, M. Lefranc, H. Yaïche, O. Godefroy, and P. Krystkowiak, "Acute Dementia After Deep Brain Stimulation in Parkinson Disease," World Neurosurgery, vol. 119, pp. 63-65, Nov. 2018, DOI: 10.1016/j.wneu.2018.07.197.
https://doi.org/10.1016/j.wneu.2018.07.197
S. Goering, E. Klein, D. D. Dougherty, and A. S. Widge, "Staying in the Loop: Relational Agency and Identity in Next-Generation DBS for Psychiatry," AJOB Neuroscience, vol. 8, no. 2, pp. 59-70, Apr. 2017, DOI: 10.1080/21507740.2017.1320320.
https://doi.org/10.1080/21507740.2017.1320320
"Deep-Brain Stimulation: Surgical Relief for Parkinson's and Beyond | ALZFORUM." [Online]. Available: https://www.alzforum.org/print-series/192366. [Accessed: 21-Feb-2019].
H. Yasin, H.-J. Hoff, I. Blümcke, and M. Simon, "Experience with 102 frameless stereotactic biopsies using the neuromate® robotic device," World Neurosurg, Nov. 2018, DOI: 10.1016/j.wneu.2018.11.187.
https://doi.org/10.1016/j.wneu.2018.11.187
N. Alan, P. Lee, A. Ozpinar, B. A. Gross, and B. T. Jankowitz, "Robotic Stereotactic Assistance (ROSA) Utilization for Minimally Invasive Placement of Intraparenchymal Hematoma and Intraventricular Catheters," World Neurosurg, vol. 108, pp. 996.e7-996.e10, Dec. 2017, DOI: 10.1016/j.wneu.2017.09.027.
https://doi.org/10.1016/j.wneu.2017.09.027
J. J. Abbott, G. D. Hager, and A. M. Okamura, "Steady-hand teleoperation with virtual fixtures," in The 12th IEEE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003., Millbrae, CA, USA, 2003, pp. 145-151, DOI: 10.1109/ROMAN.2003.1251824.
https://doi.org/10.1109/ROMAN.2003.1251824
C. Lagman et al., "Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies," J Clin Neurosci, vol. 36, pp. 20-26, Feb. 2017, DOI: 10.1016/j.jocn.2016.10.019.
https://doi.org/10.1016/j.jocn.2016.10.019
K.-W. Baek et al., "Clinical applicability of robot-guided contact-free laser osteotomy in cranio-maxillo-facial surgery: in-vitro simulation and in-vivo surgery in minipig mandibles," British Journal of Oral and Maxillofacial Surgery, vol. 53, no. 10, pp. 976-981, Dec. 2015, DOI: 10.1016/j.bjoms.2015.07.019.
https://doi.org/10.1016/j.bjoms.2015.07.019
N. P. Dillon et al., "A Compact, Bone-Attached Robot for Mastoidectomy," Journal of Medical Devices, vol. 9, no. 3, pp. 031003-031003-7, Sep. 2015, DOI: 10.1115/1.4030083.
https://doi.org/10.1115/1.4030083
S. Othman and B. J. McKinnon, "Financial outcomes of transoral robotic surgery: A narrative review," American Journal of Otolaryngology, vol. 39, no. 4, pp. 448-452, Jul. 2018, DOI: 10.1016/j.amjoto.2018.04.001.
https://doi.org/10.1016/j.amjoto.2018.04.001
S. A. Patel et al., "Post-operative therapy following transoral robotic surgery for unknown primary cancers of the head and neck," Oral Oncology, vol. 72, pp. 150-156, 2017, DOI: 10.1016/j.oraloncology.2017.07.019.
https://doi.org/10.1016/j.oraloncology.2017.07.019
J. K. Byrd et al., "Transoral Robotic Surgery and the Unknown Primary: A Cost-Effectiveness Analysis," Otolaryngol Head Neck Surg, vol. 150, no. 6, pp. 976-982, 2014, DOI: 10.1177/0194599814525746.
https://doi.org/10.1177/0194599814525746
M. Friedman et al., "Transoral robotic glossectomy for the treatment of obstructive sleep apnea-hypopnea syndrome," Otolaryngol Head Neck Surg, vol. 146, no. 5, pp. 854-862, May 2012, DOI: 10.1177/0194599811434262.
https://doi.org/10.1177/0194599811434262
M. G. Inc, "Innovative minimally invasive transoral robotic surgery (TORS) for... by Dorian Chauvet." [Online]. Available: https://academy.eans.org/eans/2016/athens/166724/dorian.chauvet.innovative.minimally.invasive.transoral.robotic.surgery.28tors29.html. [Accessed: 12-Dec-2018].
D. Chauvet, S. Hans, A. Missistrano, C. Rebours, W. E. Bakkouri, and G. Lot, "Transoral robotic surgery for sellar tumors: first clinical study," Journal of Neurosurgery, vol. 127, no. 4, pp. 941-948, Oct. 2017, DOI: 10.3171/2016.9.JNS161638.
https://doi.org/10.3171/2016.9.JNS161638
M. E. Garstka, E. S. Alameer, S. A. Awwad, and E. Kandil, "Conventional Robotic Endoscopic Thyroidectomy for Thyroid Cancer," Endocrinology and Metabolism Clinics of North America, Dec. 2018, DOI: 10.1016/j.ecl.2018.10.005.
https://doi.org/10.1016/j.ecl.2018.10.005
C. Faria, W. Erlhagen, M. Rito, E. De Momi, G. Ferrigno, and E. Bicho, "Review of Robotic Technology for Stereotactic Neurosurgery," IEEE Rev Biomed Eng, vol. 8, pp. 125-137, 2015, DOI: 10.1109/RBME.2015.2428305.
https://doi.org/10.1109/RBME.2015.2428305
F. Rydén and H. J. Chizeck, "Forbidden-region virtual fixtures from streaming point clouds: Remotely touching and protecting a beating heart," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3308-3313, DOI: 10.1109/IROS.2012.6386012.
https://doi.org/10.1109/IROS.2012.6386012
G. R. Sutherland, Y. Maddahi, L. S. Gan, S. Lama, and K. Zareinia, "Robotics in the neurosurgical treatment of glioma," Surg Neurol Int, vol. 6, no. Suppl 1, pp. S1-S8, Feb. 2015, DOI: 10.4103/2152-7806.151321.
https://doi.org/10.4103/2152-7806.151321
H. Ueda et al., "Toward Autonomous Collision Avoidance for Robotic Neurosurgery in Deep and Narrow Spaces in the Brain," Procedia CIRP, vol. 65, pp. 110-114, 2017, DOI: 10.1016/j.procir.2017.04.027.
https://doi.org/10.1016/j.procir.2017.04.027
"Robotic Surgery: Risks vs. Rewards | AHRQ Patient Safety Network." [Online]. Available: https://psnet.ahrq.gov/webmm/case/368/Robotic-Surgery-Risks-vs-Rewards-. [Accessed: 24-Jan-2019].
S. Rangarajan, R. A. Hachem, E. Ozer, A. Beer-Furlan, D. Prevedello, and R. L. Carrau, "Robotics in Sinus and Skull Base Surgery," Otolaryngologic Clinics of North America, vol. 50, no. 3, pp. 633-641, 2017, DOI: 10.1016/j.otc.2017.01.013.
Descargas
-
Vistas(Views): 736
- PDF Descargas(Downloads): 410
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor y licencias
La revista es de acceso abierto gratuito y sus artículos se publican bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial-Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
Los autores de un artículo aceptado para publicación cederán la totalidad de los derechos patrimoniales a la Universidad Tecnológica de Pereira de manera gratuita, teniendo en cuenta lo siguiente: En caso de que el trabajo presentado sea aprobado para su publicación, los autores deben autorizar de manera ilimitada en el tiempo, a la revista para que pueda reproducirlo, editarlo, distribuirlo, exhibirlo y comunicarlo en cualquier lugar, ya sea por medios impresos, electrónicos, bases de datos, repositorios, discos ópticos, Internet o cualquier otro medio requerido.
Los cedentes mediante contrato CESIÓN DE DERECHOS PATRIMONIALES declaran que todo el material que forma parte del artículo está totalmente libre de derechos de autor de terceros y, por lo tanto, se hacen responsables de cualquier litigio o reclamación relacionada o reclamación relacionada con derechos de propiedad intelectual, exonerando de toda responsabilidad a la Universidad Tecnológica de Pereira (entidad editora) y a su revista Scientia et Technica. De igual forma, los autores aceptan que el trabajo que se presenta sea distribuido en acceso abierto gratuito, resguardando los derechos de autor bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial- Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
https://creativecommons.org/licenses/by-nc-sa/4.0/
A los autores, la revista Scientia et Technica tiene la obligación de respetarle los derechos morales (artículo 30 de la Ley 23 de 1982 del Gobierno Colombiano) que se les debe reconocen a estos la paternidad de la obra, el derecho a la integridad y el derecho de divulgación. Estos no se pueden ceder ni renunciar.