Assessment of Transient Stability Indicators in Wind-Integrated Power Systems: An Open- Source Simultaneous Approach


Autores/as

DOI:

https://doi.org/10.22517/23447214.25259

Palabras clave:

Ecuaciones diferenciales algebraicas, Dinámica en sistemas de potencia, Estabilidad del sistema de potencia, Fuentes renovables de energía, Integración a la red de la energía eólica, Differential-algebraic equations, power system dynamics, power system stability, renewable energy sources, wind power grid integration

Resumen

La transición energética se basa en la integración de fuentes no convencionales de energía renovable. Estos avances tecnológicos disruptivos modifican el funcionamiento y operación del sistema de potencia. Este documento describe los impactos de la energía eólica en los indicadores de estabilidad transitoria del sistema eléctrico, utilizando una formulación implícita y el sistema de prueba de nueve barras. Los hallazgos de esta investigación muestran que los indicadores de estabilidad transitoria son susceptibles a la ubicación y duración de la falla.
Además, hay una tendencia creciente en los resultados para el rotor máximo. desviación de velocidad y la duración de la oscilación, lo que significa que los márgenes de estabilidad se reducen.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] V. Akhmatov, “Analysis of dynamic behaviour of electric power systems

with large amount of wind power,” Doctoral Thesis, Universidad T´ecnica de Dinamarca, Lyngby, 2003.

[2] J. G. Slootweg, “Wind power: Modelling and impact on power system dynamics,” Doctoral Thesis, Delft University of Technology, Delft, 2003.

[3] Y. Coughlan, “Wind turbine modelling for power system stability

analysis – a system operator perspective,” IEEE Transactions on Power Systems, vol. 22, pp. 929–936, 2007.

[4] M. Vittal, E. O’Malley and A. Keane, “Rotor angle stability with high

penetrations of wind generation,” IEEE Transactions on Power Systems, vol. 27, pp. 353–362, 2012.

[5] A. Agarala and et al., “Transient stability analysis of a multimachine

power system integrated with renewables,” Energies, vol. 15, no. 13, 2022. [Online]. Available: https://www.mdpi.com/1996- 1073/15/13/4824

[6] D. Trudnowski, “Fixed-speed wind-generator and wind- park modeling for transient stability studies,” IEEE Transactions on Power Systems, vol. 19, pp. 1911–1917, 2004.

[7] M. Rahimi and M. Parniani, “Dynamic behavior and transient stability analysis of fixed speed wind turbines,” Renewable Energy, vol. 34, pp. 2613–2624, 2009.

[8] M. Reza, “Stability analysis of transmission system with high penetration

of distributed generation,” Doctoral Thesis, Delft University of Technology, Delft, 2006.

[9] M. Zapata Ceballos, “Estabilidad de peque˜na se˜nal en sistemas de energ´ıa el´ectrica con alta penetraci´on de generaci´on renovable,” Master’s thesis, UNAL Medell´ın, 2020.

[10] J. Chow and K. Cheung, “A toolbox for power system dynamics and

control engineering education and research,” IEEE Transactions on

Power Systems, vol. 7, no. 4, pp. 1559–1564, 1992.

[11] F. Milano, “An open source power system analysis toolbox,” IEEE

Transactions on Power Systems, vol. 20, no. 3, pp. 1199–1206, 2005.

[12] S. Cole and R. Belmans, “Matdyn, a new matlab-based toolbox for

power system dynamic simulation,” IEEE Transactions on Power Systems,

vol. 26, no. 3, pp. 1129–1136, 2011.

[13] I. Abdulrahman, “Matlab-based programs for power system dynamic

analysis,” IEEE Open Access Journal of Power and Energy, vol. 7, pp.

–69, 2020.

[14] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.

[15] F. Milano, “Semi-implicit formulation of differential-algebraic equations

for transient stability analysis,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4534–4543, 2016.

[16] C. Wang, K. Yuan, P. Li, B. Jiao, and G. Song, “A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 386–395, 2018.

[17] J. Pitteloud, “Wind energy international. obtenido de global wind

installations,” p. 1, 2020.

[18] IEC61400-27-1, “Wind energy generation systems - part 27-1: Electrical

simulation models - generic models,” p. 100, 2020.

[19] J. Fortmann, Modeling of Wind Turbines with Doubly Fed Generator

System, 1st ed. Duisburg: Springer Vieweg, 2015.

[20] A. D. Hansen, “Dynamic wind turbine models in power system simulation

tool digsilent,” Technical University of Denmark, Riso National

Laboratory, Tech. Rep., 2007.

[21] N. Hatziargyriou and et al., “Definition and classification of power system stability – revisited & extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271–3281, 2021.

[22] K. R. Padiyar, Power System Dynamics: Stability and Control, 1st ed. Hyderabad: BS Publicaciones, 2008.

[23] F. Milano, Power System Modelling and Scripting, 1st ed. La Mancha:

Springer, 2010.

[24] J. Sosapanta Salas, “Simulaci´on de la influencia de la generaci´on de

energ´ıa e´olica en la estabilidad transitoria,” Master’s thesis, UNAL,

Descargas

Publicado

2024-07-22

Cómo citar

Sosapanta Salas, J. C., & Ruiz Mendoza , B. J. (2024). Assessment of Transient Stability Indicators in Wind-Integrated Power Systems: An Open- Source Simultaneous Approach. Scientia Et Technica, 29(02), 65–72. https://doi.org/10.22517/23447214.25259

Número

Sección

Eléctrica