Biosorción y biorremediación de aguas residuales de origen textil: Una solución sostenible para la industria.


Autores/as

  • Stefany Patiño Jiménez Universidad de Caldas
  • Diana Marcela Ocampo Serna Universidad de Caldas

DOI:

https://doi.org/10.22517/23447214.25501

Palabras clave:

Agua residual, Biorremediación, Biosorción, Contaminantes, Industria Textil

Resumen

En la actualidad, la industria textil destaca por su contribución económica a nivel mundial. No obstante, su expansión conlleva una creciente inquietud debido al impacto ambiental y la generación masiva de aguas residuales altamente contaminadas. Estas aguas, provenientes de la industria textil, albergan una amplia gama de compuestos orgánicos nocivos, incluyendo colorantes, sustancias químicas persistentes, metales pesados y otros elementos, representando un desafío ambiental considerable y un riesgo significativo para los ecosistemas acuáticos y la salud humana. Este artículo se enfoca en la aplicación de la biorremediación y la biosorción, como métodos esenciales para abordar la problemática de la contaminación del agua derivada de la industria textil. Estos métodos han surgido como soluciones prometedoras y sostenibles frente a esta preocupación creciente, ofreciendo avances significativos en la mitigación de la contaminación del agua y un panorama esperanzador para el desarrollo sostenible de la industria textil. Su implementación adecuada y continuada puede conducir a prácticas más responsables y respetuosas con el medio ambiente para degradar y eliminar contaminantes utilizando microrganismos de manera efectiva.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Stefany Patiño Jiménez, Universidad de Caldas

Magister en Quimica de la  Universidad de Caldas

Diana Marcela Ocampo Serna, Universidad de Caldas

Doctora en Ciencias Quimicas de la Universidad del Valle
Profesora de planta de la Universidad de Caldas

Citas

[1] O. Bello, K. A. Adegoke, A. Olaniyan, and H. Abdulazeez, “Dye adsorption using biomass wastes and natural adsorbents: overview and future prospects,” Desalin. Water Treat., vol. 53, pp. 1–24, Nov. 2013. DOI:10.1080/19443994.2013.862028

[2] B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnol. Res. Innov., vol. 3, no. 2, pp. 275–290, 2019. DOI:10.1016/j.biori.2019.09.001

[3] P. E. Zaruma Arias, J. B. Proal Nájera, I. C. Hernández, and H. I. Salas Ayala, “Los Colorantes Textiles Industriales Y Tratamientos Óptimos De Sus Efluentes De Agua Residual: Una Breve Revisión Textile Industrial Dyes and optimal wastewater effluents treatments: A short review,” Rev. la Fac. Ciencias Quìmicas, vol. 19, pp. 38–47, 2018.

[4] M. A. Al-Ghouti, J. Li, Y. Salamh, N. Al-Laqtah, G. Walker, and M. N. M. Ahmad, “Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent,” J. Hazard. Mater., vol. 176, no. 1, pp. 510–520, 2010. DOI:10.1016/j.jhazmat.2009.11.059

[5] L. Cobos-Becerra and S. Gonzalez-Martinez, Degradación biológica de colorantes azo en agua residual (Review). 2010.

[6] S. Benkhaya, S. M’rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon, vol. 6, no. 1, p. e03271, 2020. DOI:10.1016/j.heliyon.2020.e03271

[7] L. M. Biju, V. G. K, P. Senthil Kumar, R. Kavitha, R. Rajagopal, and G. Rangasamy, “Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation,” Environ. Res., vol. 216, p. 114635, 2023. DOI: 10.1016/j.envres.2022.114635

[8] L. Qian, S. Fang, X. Song, and H. Qian, “An alternative strategy for the synthesis of disazo disperse dyes and their application on polyester fabric,” Dye. Pigment., vol. 214, p. 111188, 2023.

[9] M. Constapel, M. Schellenträger, J. M. Marzinkowski, and S. Gäb, “Degradation of reactive dyes in wastewater from the textile industry by ozone: Analysis of the products by accurate masses,” Water Res., vol. 43, no. 3, pp. 733–743, 2009. DOI: 10.1016/j.dyepig.2023.111188

[10] T. R. Usacheva, D. V Batov, L. S. Petrova, E. L. Vladimirtzeva, and O. I. Odintzova, “The study of interactions between textile auxiliary polyelectrolytes by isothermal titration calorimetry,” J. Mol. Liq., vol. 359, p. 119286, 2022. DOI: 10.1016/j.molliq.2022.119185

[11] S. Afrin, H. R. Shuvo, B. Sultana, F. Islam, A. A. Rus’d, S. Begum, and M. N. Hossain, “The degradation of textile industry dyes using the effective bacterial consortium,” Heliyon, vol. 7, no. 10, p. e08102, 2021. DOI: 10.1016/j.heliyon.2021.e08102

[12] N. Reddy, L. Chen, Y. Zhang, and Y. Yang, “Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly(vinyl alcohol),” J. Clean. Prod., vol. 65, pp. 561–567, 2014. DOI: 10.1016/j.jclepro.2013.09.046

[13] Z. Hussain, M. Arslan, G. Shabir, M. H. Malik, M. Mohsin, S. Iqbal, and M. Afzal, “Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale,” Sci. Total Environ., vol. 685, pp. 370–379, 2019. DOI: 10.1016/j.scitotenv.2019.05.414

[14] H. Zhang, B. Yu, W. Zhou, X. Liu, and F. Chen, “High-value utilization of eucalyptus kraft lignin: Preparation and characterization as efficient dye dispersant,” Int. J. Biol. Macromol., vol. 109, pp. 1232–1238, 2018. DOI: 10.1016/j.ijbiomac.2017.11.118

[15] A. Lopez Miguel, ““estudio del proceso de degradación electroquímica de colorantes tipo ftalocianina en matrices acuosas contaminadas con azul lanasol 8g,” Centro de Investigación y Desarrollo Tecnológico en Electroquímica, México, 2015.

[16] S. C. Bhatia and S. Devraj, Pollution Control in Textile Industry. WPI India, 2017. DOI: 10.1201/9781315148588

[17] R. Al-Tohamy, S. S. Ali, F. Li, K. M. Okasha, Y. A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, and J. Sun, “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022. DOI: 10.1016/j.ecoenv.2021.113160

[18] F. Muñoz, “Optimización de la descarga líquida de una industria farmacéutica (I parte), Revista Politécnica,vol.31, 111-116,” vol. 31, pp. 111–116, Jan. 2010.

[19] K. G. Bhattacharyya and A. Sarma, “Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder,” Dye. Pigment., vol. 57, no. 3, pp. 211–222, 2003. DOI: 10.1016/S0143-7208(03)00009-3

[20] R. Gurav, Y.-K. Choi, G. Vyavahare, S. K. Bhatia, H. Lyu, C. Aware, D. C. Kalyani, E. Kan, J. P. Jadhav, and Y.-H. Yang, “7 - Production, characterization, and application of biochar for remediation of dyes from textile industry wastewater,” S. P. Govindwar, M. B. Kurade, B.-H. Jeon, and A. B. T.-C. D. in B. and B. Pandey, Eds. Elsevier, 2023, pp. 231–251. DOI: 10.1016/B978-0-323-91235-8.00024-3

[21] M. M. Hassan and C. M. Carr, “A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents,” Chemosphere, vol. 209, pp. 201–219, 2018. DOI:10.1016/j.chemosphere.2018.06.043

[22] L. G. M. Silva, F. C. Moreira, M. A. P. Cechinel, L. P. Mazur, A. A. U. de Souza, S. M. A. G. U. Souza, R. A. R. Boaventura, and V. J. P. Vilar, “Integration of Fenton’s reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse,” J. Environ. Manage., vol. 272, p. 111082, 2020. DOI: 10.1016/j.jenvman.2020.111082

[23] R. N. Bharagava, S. Mani, S. I. Mulla, and G. D. Saratale, “Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation,” Ecotoxicol. Environ. Saf., vol. 156, pp. 166–175, 2018. DOI: 10.1016/j.ecoenv.2018.03.012

[24] S. A. J. Rima, G. K. Paul, S. Islam, M. Akhtar-E-Ekram, S. Zaman, M. Abu Saleh, and M. Salah Uddin, “Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth optimization, and comparative degradation,” J. Hazard. Mater. Lett., vol. 3, p. 100068, 2022. DOI: 10.1016/j.hazl.2022.100068

[25] V. J, S. J. Basha, and J. Jegan, “A review on efficacious methods to decolorize reactive Azo Dye,” J. Urban Environ. Eng., vol. 7, pp. 30–47, Aug. 2013. DOI:10.4090/juee.2013.v7n1.030047

[26] K. Paździor, J. Wrębiak, A. Klepacz-Smółka, M. Gmurek, L. Bilińska, L. Kos, J. Sójka-Ledakowicz, and S. Ledakowicz, “Influence of ozonation and biodegradation on toxicity of industrial textile wastewater,” J. Environ. Manage., vol. 195, pp. 166–173, 2017. DOI: 10.1016/j.jenvman.2016.06.055

[27] G. A. Ismail and H. Sakai, “Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal,” Chemosphere, vol. 291, p. 132906, 2022. DOI: 10.1016/j.chemosphere.2021.132906

[28] O. S. G. P. Soares, J. J. M. Órfão, D. Portela, A. Vieira, and M. F. R. Pereira, “Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters,” J. Hazard. Mater., vol. 137, no. 3, pp. 1664–1673, 2006. DOI: 10.1016/j.jhazmat.2006.05.006.

[29] B. Bethi, S. H. Sonawane, B. A. Bhanvase, and S. S. Sonawane, “Textile Industry Wastewater Treatment by Cavitation Combined with Fenton and Ceramic Nanofiltration Membrane,” Chem. Eng. Process. - Process Intensif., vol. 168, p. 108540, 2021. DOI: 10.1016/j.cep.2021.108540

[30] D. Suteu, C. Zaharia, D. Bilba, R. Muresan, A. Popescu, and A. Muresan, “Decolorization wastewaters from the textile industry – physical methods, chemical methods,” Ind. textilă, vol. 60, pp. 254–263, Oct. 2009.

[31] L. F. Garcés Giraldo and G. A. Peñuela Mesa, “Cinética de degradación y mineralización del colorante Naranja Reactivo 84 en aguas,” Rev. Lasallista Investig., vol. 2, no. 2, pp. 21–25, May 2005.

[32] C. Zaharia and D. Suteu, “Textile Organic Dye: Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents A Critical Overview,” in Organic Pollutants Ten Years after the Stockholm Convention - Environmental and Analytical Update, 2012. DOI: 10.5772/32373

[33] P. Soloman, C. Basha, V. Manickam, V. Ramamurthi, K. Koteeswaran, and B. Subramanian, “Electrochemical Degradation of Remazol Black B Dye Effluent,” CLEAN – Soil, Air, Water, vol. 37, pp. 889–900, Nov. 2009. DOI:10.1002/clen.200900055

[34] F. Orts, A. I. del Río, J. Molina, J. Bonastre, and F. Cases, “Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®,” J. Electroanal. Chem., vol. 808, pp. 387–394, 2018. DOI: 10.1016/j.jelechem.2017.06.051

[35] R. Partal, I. Basturk, S. Murat Hocaoglu, A. Baban, and E. Yilmaz, “Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: A case study,” Water Resour. Ind., vol. 27, p. 100174, 2022. DOI:10.1016/j.wri.2022.100174

[36] C. O. R. Dario, “Las microalgas y el tratamiento de aguas residuales: conceptos y aplicaciones. Una revisión bibliográfica.,” Universidad Nacional Abierta y a Distancia, 2016.

[37] J. Humanante, C. Deza, L. Moreno, and A. Grijalva, “Biorecovery of wastewater with microorganisms,” Manglar, vol. 18, no. 4, pp. 346–356, 2021. DOI:10.17268/manglar.2021.044

[38] R. Prince, J. Clark, and J. Lindstrom, “Field Studies Demonstrating the Efficacy of Bioremediation in Marine Environments,” 2015. DOI:10.1007/8623_2015_172

[39] J. Garzón, J. Rodriguez Miranda, and C. Gómez, “Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible,” Univ. y Salud, vol. 19, p. 309, Aug. 2017. DOI: 10.22267/rus.171902.93

[40] T. Fazal, M. S. U. Rehman, F. Javed, M. Akhtar, A. Mushtaq, A. Hafeez, A. Alaud Din, J. Iqbal, N. Rashid, and F. Rehman, “Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris),” Chemosphere, vol. 281, p. 130758, 2021. DOI: 10.1016/j.chemosphere.2021.130758

[41] Y. Huaringa, V. Surco, and S. Contreras-Liza, “Biorremediacion mediante la asociación entre microorganismos y plantas,” Repos. Rev. LA Univ. Priv. PUCALLPA, vol. 1, Apr. 2017. DOI:10.37292/riccva.v1i02.23

[42] N. Muhamad, P. Soontornnon Sinchai, and U. Tansom, “Banana peel as bioremediation agent in textile dyes decolorization for wastewater management,” Biochem. Syst. Ecol., vol. 106, p. 104582, 2023. DOI: 10.1016/j.bse.2022.104582

[43] A. Parihar and P. Malaviya, “Textile wastewater phytoremediation using Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a two-step remediation system,” Environ. Res., vol. 221, p. 115307, 2023. DOI: 10.1016/j.envres.2023.115307

[44] M. del C. Gonzalez Chavez, “Alternativas de fitorremediación de sitios contaminados con elementos potencialmente tóxicos.,” Mar. 2017.

[45] L. J. Rather, S. Akhter, and Q. P. Hassan, “Bioremediation: Green and Sustainable Technology for Textile Effluent Treatment BT - Sustainable Innovations in Textile Chemistry and Dyes,” S. S. Muthu, Ed. Singapore: Springer Singapore, 2018, pp. 75–91. DOI:10.1007/978-981-10-8600-7_4

[46] D. İ. Çifçi and S. Meriç, “Chapter 19 - A critical review on biofiltration for wastewater treatment: Focus on organic micropollutants,” M. Shah, S. Rodriguez-Couto, and J. B. T.-A. I. R. of B. in W. T. P. (WWTPs) Biswas, Eds. Elsevier, 2022, pp. 369–388. DOI: 10.1016/B978-0-12-823946-9.00002-4.

[47] B. Sharma, A. K. Dangi, and P. Shukla, “Contemporary enzyme based technologies for bioremediation: A review,” J. Environ. Manage., vol. 210, pp. 10–22, 2018. DOI: 10.1016/j.jenvman.2017.12.075

[48] L. Porto de Souza Vandenberghe, N. Libardi Junior, K. K. Valladares-Diestra, S. G. Karp, J. Gueiros Wanderley Siqueira, C. Rodrigues, and C. R. Soccol, “Chapter 16 - Enzymatic bioremediation: current status, challenges, future prospects, and applications,” S. Rodriguez-Couto and M. P. B. T.-D. in W. T. R. and P. Shah, Eds. Elsevier, 2022, pp. 355–381. DOI: 10.1016/B978-0-323-85839-7.00002-5

[49] S. F. Oliveira, J. M. R. da Luz, M. C. M. Kasuya, L. O. Ladeira, and A. Correa Junior, “Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: Potential biocatalyst in dye decolourization,” Saudi J. Biol. Sci., vol. 25, no. 4, pp. 651–659, 2018.

[50] L. R. Pinheiro, D. G. Gradíssimo, L. P. Xavier, and A. V Santos, “Degradation of Azo Dyes: Bacterial Potential for Bioremediation,” Sustainability, vol. 14, no. 3. 2022.

[51] A. Yurtsever, E. Basaran, D. Ucar, and E. Sahinkaya, “Self-forming dynamic membrane bioreactor for textile industry wastewater treatment,” Sci. Total Environ., vol. 751, p. 141572, 2021.

[52] X. Liu, P. Tang, Y. Liu, W. Xie, C. Chen, T. Li, Q. He, J. Bao, A. Tiraferri, and B. Liu, “Efficient removal of organic compounds from shale gas wastewater by coupled ozonation and moving-bed-biofilm submerged membrane bioreactor,” Bioresour. Technol., vol. 344, p. 126191, 2022.

[53] L. Cao, Y. Li, P. Li, X. Zhang, L. Ni, L. Qi, H. Wen, X. Zhang, and Y. Zhang, “Application of moving bed biofilm reactor - nanofiltration - membrane bioreactor with loose nanofiltration hollow fiber membranes for synthetic roxithromycin-containing wastewater treatment: Long-term performance, membrane fouling and microbial community,” Bioresour. Technol., vol. 360, p. 127527, 2022. DOI: 10.1016/j.biortech.2022.127527

[54] M. Wawrzkiewicz, P. Bartczak, and T. Jesionowski, “Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent,” Int. J. Biol. Macromol., vol. 99, pp. 754–764, 2017. DOI:10.1016/j.ijbiomac.2017.03.023

[55] P. Santhanam, N. Kumar, A. Selvaraju, A. S. Devi, J. Selvakumaran, J. Thillainayagam, and P. Ananthi, “Preliminary study on the dye removal efficacy of immobilized marine and freshwater microalgal beads from Textile wastewater,” AFRICAN J. Biotechnol., vol. 13, pp. 2288–2294, May 2014. DOI:10.5897/AJB2013.13242

[56] D. Suteu, C. Zaharia, and T. Măluțan, “Biosorbents based on lignin used in biosorption processes from wastewater treatment. A review,” in Lignin: Properties and Applications in Biotechnology and Bioenergy, 2012, pp. 278–305.

[57] P. Sagar Jena, A. Pradhan, S. Prakash Nanda, A. Kishore Dash, and B. Naik, “Biosorption of heavy metals from wastewater using Saccharomyces cerevisiae as a biosorbent: A mini review,” Mater. Today Proc., vol. 67, pp. 1140–1146, 2022. DOI: 10.1016/j.matpr.2022.07.306

[58] S. Dutta and J. Bhattacharjee, “Chapter 1 - A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater,” M. P. Shah, S. Rodriguez-Couto, and R. T. B. T.-D. in W. T. R. and P. Kapoor, Eds. Elsevier, 2022, pp. 1–21. DOI: 10.1016/B978-0-323-85657-7.00003-1

[59] A. K. Sahoo, A. Dahiya, and B. K. Patel, “Chapter 6 - Biological methods for textile dyes removal from wastewaters,” M. P. Shah, S. Rodriguez-Couto, and R. T. B. T.-D. in W. T. R. and P. Kapoor, Eds. Elsevier, 2022, pp. 127–151. DOI: 10.1016/B978-0-323-85657-7.00009-2

Descargas

Publicado

2024-07-22

Cómo citar

Patiño Jiménez, S., & Ocampo Serna, D. M. (2024). Biosorción y biorremediación de aguas residuales de origen textil: Una solución sostenible para la industria. Scientia Et Technica, 29(02), 97–106. https://doi.org/10.22517/23447214.25501

Número

Sección

Ciencias Ambientales