Edificios nZEB, análisis de la tendencia de investigación


Autores/as

DOI:

https://doi.org/10.22517/23447214.24795

Palabras clave:

Sustainable Development, Efficiency, NZEB, Energy Performance, Research Trends.

Resumen

En el presente trabajo se exploran la tendencia de investigación con relación a los edificios NZEB, mediante el análisis de artículos científicos seleccionados publicados en 11 revistas recopilados en orden cronológico desde el año 2014 hasta el 2020. El análisis se realiza en base y términos de publicaciones investigativas anuales de los documentos con relación a los NZEB, como contribuciones realizadas por países, instituciones, autores, y temas de investigación cubiertos. El estudio realizado utiliza una metodología de revisión documental. El análisis revela un creciente interés de investigación de rendimiento energético en los últimos tiempos, lo que implica la importancia que la industria de la construcción atribuye a NZEB en consecuencias al calentamiento global y problemática ambiental se está acelerando. Los hallazgos también indican que, durante el período estudiado, los investigadores de las zonas con economías desarrolladas como los EE. UU., e Italia contribuye-ron con índices más altos a promover la investigación sobre NZEB. Los países en desarrollo como China también hicieron grandes esfuerzos para promover la investigación. Los temas de investigación cubiertos tienden a centrarse en los estudios finalizados con la entrega y el desarrollo de proyectos de NZEB, rehabilitación de edificios, rendimiento energético y tecnologías avanzadas que se aplican para el mejoramiento energético en las edificaciones. Esta investigación proporciona una plataforma valiosa para que los profesionales e investigadores de la industria comprendan las tendencias y los desarrollos de investigación de la construcción NZEB, incluida su aplicabilidad, sus futuras investigaciones y contribuciones al tema.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Brayan Eduardo Tarazona Romero, Unidades Tecnológicas de Santander

Brayan Eduardo Tarazona Romero. was born in Floridablanca, Santander, on August 21, 1992. Electromechanical technologist of the Unidades Tecnológicas de Santander, Colombia in 2013. Ingeniero Electromecánico de las Unidades Tecnológicas de Santander, Colombia en el año 2015. Master in Renewable Energies and Energy Efficiency from the Open University of Madrid, Spain in 2018 and PhD in Energy Efficiency and Sustainability in Engineering and Architecture from the University of the Basque Country EHU-UPV, Spain. Professor of the Technological Units of Santander, attached to the Coordination of Electromechanics, the seedbed Technological Evolution EVOTEC and the Research Group in Energy Systems, Automation and Control GISEAC

Camilo Leonardo Sandoval Rodriguez, Unidades Tecnológicas de Santander

Camilo L. Sandoval R. Was born in Bucaramanga, Santander, on July 24, 1977. Electronic Engineer from the Industrial University of Santander, Master in Electronic Engineering from the Industrial University of Santander and PhD in electronics and communications from the University of the Basque Country EHU-UPV, Spain. Professor of the Technological Units of Santander, attached to the Coordination of Electromechanics and director of the Research Group on Energy Systems, Automation and Control GISEAC.

Arly Dario Rincon Quintero

Arly Darío Rincón Quintero was born in Aguachica, Cesar, Colombia in 1982. He received the degree in mechanical engineering from Francisco de Paula Santander University, Colombia, in 2005 and the degree Master in Energy Efficiency and Sustainability from the University of the Basque Country UPV/EHU, Bilbao, España, in 2013. He is currently pursuing the Ph.D. degree in Energy efficiency and sustainability in engineering and architecture with Basque Country UPV/EHU, Bilbao, España. He is a senior researcher before MinCiencias, Colombia associate professor at the Unidades Tecnologicas de Santander, in the Faculty of Natural Sciences and Engineering. ORCID

Jessica Gissella Maradey Lozano

Jessica Gissella Maradey L. was born in Bucaramanga, Santander, Colombia. She is a Mechanical Engineer, Master in Engineering with emphasis in Quality Systems and Productivity, Master in Mechanical Engineering and Ph.D student in Engineering from the Universidad Autónoma de Bucaramanga. Certified Vibration Analyst ISO Category I. Member of RELIEVE (Red Latinoamericana de Investigación en Energía y Vehículos). Her areas of interest are: energy and vehicles; dynamics, vibration and control; structural health. ASME and SAE Member. Researcher at Control and Mechatronics Research Group (GYCIM) by Universidad Autónoma de Bucaramanga and Dynamic, Control and Robotic Research Group (DiCBoT) by Universidad Industrial de Santander.  8 years automotive industry experience. Associate Professor of Mechatronics Engineering Program at Universidad Autónoma de Bucaramanga.

Citas

[1] Y. Ma, M. Gong, H. Zhao, and X. Li, “Contribution of road dust from Low Impact Development (LID) construction sites to atmospheric pollution from heavy metals,” Sci. Total Environ., vol. 698, p. 134243, Jan. 2020, doi: 10.1016/j.scitotenv.2019.134243.

[2] D. Cheriyan and J. ho Choi, “A review of research on particulate matter pollution in the construction industry,” Journal of Cleaner Production, vol. 254. Elsevier Ltd, p. 120077, May 01, 2020, doi: 10.1016/j.jclepro.2020.120077.

[3] A. Alvanchi, M. Rahimi, M. Mousavi, and H. Alikhani, “Construction schedule, an influential factor on air pollution in urban infrastructure projects,” J. Clean. Prod., vol. 255, p. 120222, May 2020, doi: 10.1016/j.jclepro.2020.120222.

[4] D. Gatt, C. Yousif, M. Cellura, L. Camilleri, and F. Guarino, “Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive,” Renew. Sustain. Energy Rev., vol. 127, p. 109886, Jul. 2020, doi: 10.1016/j.rser.2020.109886.

[5] A. A. Hassan and K. El-Rayes, “Optimizing the integration of renewable energy in existing buildings,” Energy Build., vol. 238, p. 110851, May 2021, doi: 10.1016/j.enbuild.2021.110851.

[6] A. Vilches, A. Garcia-Martinez, and B. Sanchez-Montañes, “Life cycle assessment (LCA) of building refurbishment: A literature review,” Energy and Buildings, vol. 135. Elsevier Ltd, pp. 286–301, Jan. 2017, doi: 10.1016/j.enbuild.2016.11.042.

[7] K. Qu, X. Chen, Y. Wang, J. Calautit, S. Riffat, and X. Cui, “Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK,” Energy, vol. 220, p. 119646, Apr. 2021, doi: 10.1016/j.energy.2020.119646.

[8] D. Mikulić, S. Slijepčević, and G. Buturac, “Energy renovation of multi apartment buildings: Contributions to economy and climate changes,” Energy Build., vol. 224, p. 110247, Oct. 2020, doi: 10.1016/j.enbuild.2020.110247.

[9] J. Terés-Zubiaga et al., “Cost-effective building renovation at district level combining energy efficiency & renewables – Methodology assessment proposed in IEA-Annex 75 and a demonstration case study,” Energy Build., vol. 224, p. 110280, Oct. 2020, doi: 10.1016/j.enbuild.2020.110280.

[10] J. F. Armendariz-Lopez, A. P. Arena-Granados, M. E. Gonzalez-Trevizo, A. Luna-Leon, and G. Bojorquez-Morales, “Energy payback time and Greenhouse Gas emissions: Studying the international energy agency guidelines architecture,” J. Clean. Prod., vol. 196, pp. 1566–1575, Sep. 2018, doi: 10.1016/j.jclepro.2018.06.134.

[11] A. Stephan and L. Stephan, “Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate,” Appl. Energy, vol. 280, p. 115932, Dec. 2020, doi: 10.1016/j.apenergy.2020.115932.

[12] V. Costanzo, K. Fabbri, and S. Piraccini, “Stressing the passive behavior of a Passivhaus: An evidence-based scenario analysis for a Mediterranean case study,” Build. Environ., vol. 142, pp. 265–277, 2018, doi: 10.1016/j.buildenv.2018.06.035.

[13] N. Bonatz, R. Guo, W. Wu, and L. Liu, “A comparative study of the interlinkages between energy poverty and low carbon development in China and Germany by developing an energy poverty index,” Energy Build., vol. 183, pp. 817–831, Jan. 2019, doi: 10.1016/j.enbuild.2018.09.042.

[14] B. E. Tarazona, C. L. Sandoval R, C. G. Cárdenas Arias, J. G. Ascanio V., and J. J. Valencia N., “Detection of structural alterations in metal bodies: An approximation using Fourier transform and principal component analysis (PCA),” Sci. Tech., vol. 25, no. 2, pp. 255–260, Jun. 2020, doi: 10.22517/23447214.23501.

[15] J. Palmer Real et al., “Characterisation of thermal energy dynamics of residential buildings with scarce data,” Energy Build., vol. 230, p. 110530, Jan. 2021, doi: 10.1016/j.enbuild.2020.110530.

[16] L. Evangelisti, C. Guattari, F. Asdrubali, and R. de Lieto Vollaro, “In situ thermal characterization of existing buildings aiming at NZEB standard: A methodological approach,” Dev. Built Environ., vol. 2, no. March, p. 100008, 2020, doi: 10.1016/j.dibe.2020.100008.

[17] A. D. Rincón-Quintero, L. A. Del Portillo-Valdés, A. Meneses-Jácome, J. G. Ascanio-Villabona, B. E. Tarazona-Romero, and M. A. Durán-Sarmiento, “Performance Evaluation and Effectiveness of a Solar-Biomass Hybrid Dryer for Drying Homogeneous of Cocoa Beans Using LabView Software and Arduino Hardware,” Springer, Cham, 2021, pp. 238–252.

[18] B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, and A. D. Rincón-Quintero, “Development of a Fresnel Artisanal System for the Production of Hot Water or Steam,” Springer, Cham, 2021, pp. 196–209.

[19] G. Desogus, S. Mura, and R. Ricciu, “Comparing different approaches to in situ measurement of building components thermal resistance,” Energy Build., vol. 43, no. 10, pp. 2613–2620, Oct. 2011, doi: 10.1016/j.enbuild.2011.05.025.

[20] S. Colclough, O. Kinnane, N. Hewitt, and P. Griffiths, “Investigation of nZEB social housing built to the Passive House standard,” Energy Build., vol. 179, pp. 344–359, Nov. 2018, doi: 10.1016/j.enbuild.2018.06.069.

[21] P. Wu, Y. Song, W. Shou, H. Chi, H. Y. Chong, and M. Sutrisna, “A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings,” Renewable and Sustainable Energy Reviews, vol. 68. Elsevier Ltd, pp. 370–379, Feb. 2017, doi: 10.1016/j.rser.2016.10.007.

[22] J. G. Ascanio-Villabona, L. A. Del Portillo-Valdés, O. Lengerke-Pérez, B. E. T. Romero, A. D. Rincón-Quintero, and M. A. Durán-Sarmiento, “Analysis of the Energy Potential of a Tangential Microturbine for Application in a Passivhaus Environment,” Springer, Cham, 2021, pp. 181–195.

[23] Y. Lu, S. Wang, C. Yan, and Z. Huang, “Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties,” Appl. Energy, vol. 187, pp. 62–71, Feb. 2017, doi: 10.1016/j.apenergy.2016.11.042.

[24] U. (EIA) Energy Information Administration, “Annual Energy Outlook 2012,” 2012.

[25] Matan Mayer, Blanca Dasi Espuig, and Martin Bechthold, “Energy Retrofit Tradeoffs in Residential Enclosures,” J. Natl. Inst. Build. Sci., vol. 5, no. 1, pp. 14–18, 2017.

[26] K. Voss, E. Musall, and M. Lichtmeß, “From low-energy to net zero-energy buildings: Status and perspectives,” J. Green Build., vol. 6, no. 1, pp. 46–57, Feb. 2011, doi: 10.3992/jgb.6.1.46.

[27] K. Khamraev, D. Cheriyan, and J. ho Choi, “A review on health risk assessment of PM in the construction industry – Current situation and future directions,” Science of the Total Environment, vol. 758. Elsevier B.V., p. 143716, Mar. 01, 2021, doi: 10.1016/j.scitotenv.2020.143716.

[28] C. C. Tsai and M. L. Wen, “Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals,” Int. J. Sci. Educ., vol. 27, no. 1, pp. 3–14, Jan. 2015, doi: 10.1080/0950069042000243727.

[29] Y. Lee and C. A. Yue, “Status of internal communication research in public relations: An analysis of published articles in nine scholarly journals from 1970 to 2019,” Public Relat. Rev., vol. 46, no. 3, p. 101906, Sep. 2020, doi: 10.1016/j.pubrev.2020.101906.

[30] P. Moran, J. O’Connell, and J. Goggins, “Sustainable energy efficiency retrofits as residenial buildings move towards nearly zero energy building (NZEB) standards,” Energy Build., vol. 211, p. 109816, 2020, doi: 10.1016/j.enbuild.2020.109816.

[31] A. Magrini, G. Lentini, S. Cuman, A. Bodrato, and L. Marenco, “From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge - The most recent European trends with some notes on the energy analysis of a forerunner PEB example,” Dev. Built Environ., vol. 3, no. March, p. 100019, 2020, doi: 10.1016/j.dibe.2020.100019.

Europa, “DIRECTIVA 2010/31/UE del Parlamento Europea y del Consejo de 19 de mayo de 2010 relativa a la eficiencia energética de los edificios,” 2010.

[33] S. Attia, “Evolution of Definitions and Approaches,” in Net Zero Energy Buildings (NZEB), Elsevier, 2018, pp. 21–51.

[34] G. Yang, S. Mabu, K. Shimada, and K. Hirasawa, “A novel evolutionary method to search interesting association rules by keywords,” Expert Syst. Appl., vol. 38, no. 10, pp. 13378–13385, Sep. 2011, doi: 10.1016/j.eswa.2011.04.166.

[35] European Union, “DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010,” Off. J. Eur. Union, 2010.

[36] M. Ferrara and E. Fabrizio, “Cost optimal nZEBs in future climate scenarios,” Energy Procedia, vol. 122, pp. 877–882, 2017, doi: 10.1016/j.egypro.2017.07.377.

[37] E. Pikas, J. Kurnitski, M. Thalfeldt, and L. Koskela, “Cost-benefit analysis of nZEB energy efficiency strategies with on-site photovoltaic generation,” Energy, vol. 128, pp. 291–301, 2017, doi: 10.1016/j.energy.2017.03.158.

[38] S. Deng, R. Z. Wang, and Y. J. Dai, “How to evaluate performance of net zero energy building - A literature research,” Energy, vol. 71, no. 2014, pp. 1–16, 2014, doi: 10.1016/j.energy.2014.05.007.

[39] A. Hamburg, K. Kuusk, A. Mikola, and T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB,” Energy, vol. 194, p. 116874, 2020, doi: 10.1016/j.energy.2019.116874.

[40] F. Asdrubali, I. Ballarini, V. Corrado, L. Evangelisti, G. Grazieschi, and C. Guattari, “Energy and environmental payback times for an NZEB retrofit,” Build. Environ., vol. 147, no. October 2018, pp. 461–472, 2019, doi: 10.1016/j.buildenv.2018.10.047.

[41] P. Pallis et al., “Towards ΝZEB in Greece: A comparative study between cost optimality and energy efficiency for newly constructed residential buildings,” Energy Build., vol. 198, pp. 115–137, 2019, doi: 10.1016/j.enbuild.2019.06.005.

[42] F. Causone, A. Tatti, M. Pietrobon, F. Zanghirella, and L. Pagliano, “Yearly operational performance of a nZEB in the Mediterranean climate,” Energy Build., vol. 198, pp. 243–260, 2019, doi: 10.1016/j.enbuild.2019.05.062.

[43] P. Chastas, T. Theodosiou, D. Bikas, and K. Tsikaloudaki, “Integrating embodied impact into the context of EPBD recast: An assessment on the cost-optimal levels of nZEBs,” Energy Build., vol. 215, p. 109863, 2020, doi: 10.1016/j.enbuild.2020.109863.

[44] D. Kim, H. Cho, J. Koh, and P. Im, “Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 118, no. August 2019, p. 109508, 2020, doi: 10.1016/j.rser.2019.109508.

[45] F. Asdrubali, P. Baggio, A. Prada, G. Grazieschi, and C. Guattari, “Dynamic life cycle assessment modelling of a NZEB building,” Energy, vol. 191, no. xxxx, p. 116489, 2020, doi: 10.1016/j.energy.2019.116489.

[46] M. M. Sesana and G. Salvalai, “Overview on life cycle methodologies and economic feasibility fornZEBs,” Building and Environment, vol. 67. Pergamon, pp. 211–216, Sep. 2013, doi: 10.1016/j.buildenv.2013.05.022.

[47] D. D’Agostino and L. Mazzarella, “Data on energy consumption and Nearly zero energy buildings (NZEBs) in Europe,” Data Br., vol. 21, pp. 2470–2474, 2018, doi: 10.1016/j.dib.2018.11.094.

[48] E. Aparicio-Gonzalez, S. Domingo-Irigoyen, and A. Sánchez-Ostiz, “Rooftop extension as a solution to reach nZEB in building renovation. Application through typology classification at a neighborhood level,” Sustain. Cities Soc., vol. 57, no. December 2019, p. 102109, 2020, doi: 10.1016/j.scs.2020.102109.

[49] G. De Luca, I. Ballarini, A. Lorenzati, and V. Corrado, “Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications,” Renew. Energy, vol. 159, pp. 356–370, 2020, doi: 10.1016/j.renene.2020.05.170.

[50] F. Ascione, M. Borrelli, R. F. De Masi, and G. P. Vanol, “Nearly zero energy target and indoor comfort in Mediterranean climate: Discussion based on monitoring data for a real case study,” Sustain. Cities Soc., vol. 61, no. June, p. 102349, 2020, doi: 10.1016/j.scs.2020.102349.

[51] D. D’Agostino, B. Cuniberti, and I. Maschio, “Criteria and structure of a harmonised data collection for NZEBs retrofit buildings in Europe,” Energy Procedia, vol. 140, pp. 170–181, 2017, doi: 10.1016/j.egypro.2017.11.133.

[52] I. Yahyaoui, G. Tina, M. Chaabene, and F. Tadeo, “Design and Evaluation of a Renewable Water Pumping System,” in IFAC-PapersOnLine, Jan. 2015, vol. 48, no. 30, pp. 462–467, doi: 10.1016/j.ifacol.2015.12.422.

[53] P. Huang, G. Huang, and Y. Sun, “A robust design of nearly zero energy building systems considering performance degradation and maintenance,” Energy, vol. 163, pp. 905–919, 2018, doi: 10.1016/j.energy.2018.08.183.

[54] R. E. González-Mahecha, A. F. P. Lucena, A. Szklo, P. Ferreira, and A. I. F. Vaz, “Optimization model for evaluating on-site renewable technologies with storage in zero/nearly zero energy buildings,” Energy Build., vol. 172, pp. 505–516, 2018, doi: 10.1016/j.enbuild.2018.04.027.

[55] A. Thomas, C. C. Menassa, and V. R. Kamat, “A systems simulation framework to realize net-zero building energy retrofits,” Sustain. Cities Soc., vol. 41, pp. 405–420, 2018, doi: 10.1016/j.scs.2018.05.045.

[56] J. Andrey and C. Cañas, “EVALUACIÓN DEL CONFORT TÉRMICO EN LA VIVIENDA RURAL EXISTENTE EN COLOMBIA,” Universidad La Gran Colombia, 2020.

[57] R. Bruno, N. Arcuri, and C. Carpino, “Study of innovative solutions of the building envelope for passive houses in Mediterranean areas,” Energy Procedia, vol. 140, pp. 80–92, 2017, doi: 10.1016/j.egypro.2017.11.125.

[58] J. Sierra-Pérez, B. Rodríguez-Soria, J. Boschmonart-Rives, and X. Gabarrell, “Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal,” Appl. Energy, vol. 212, pp. 1510–1521, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.101.

[59] G. Ulpiani, D. Giuliani, A. Romagnoli, and C. di Perna, “Experimental monitoring of a sunspace applied to a NZEB mock-up: Assessing and comparing the energy benefits of different configurations,” Energy Build., vol. 152, pp. 194–215, 2017, doi: 10.1016/j.enbuild.2017.04.034.

[60] Y. Zhou and S. Cao, “Investigation of the flexibility of a residential net-zero energy building (NZEB) integrated with an electric vehicle in Hong Kong,” Energy Procedia, vol. 158, pp. 2567–2579, 2019, doi: 10.1016/j.egypro.2019.02.005.

Descargas

Publicado

2023-09-21

Cómo citar

Tarazona Romero, B. E., Sandoval Rodriguez, C. L., Rincon Quintero, A. D., Villabona, J. A. ., & Maradey Lozano, J. G. (2023). Edificios nZEB, análisis de la tendencia de investigación. Scientia Et Technica, 28(03). https://doi.org/10.22517/23447214.24795