Coeficientes polinomiales para funciones límite de series de potencias, una analogía con el triangulo de pascal.
DOI:
https://doi.org/10.22517/23447214.2289Abstract
En este trabajo se muestra un resultado sobre los coeficientes de las funciones poli nómicas hacia las cuales convergen cierto tipo de series infinitas. Dicho resultado está relacionado con una forma encontrada para hallar estos coeficientes y la demostración de su validez. La analogía que se pretende mostrar tiene que ver con la forma como estos coeficientes se distribuyen en un triángulo numérico, a la manera como los coeficientes binomiales lo hacen en el triángulo de Pascal.Downloads
Downloads
-
Vistas(Views): 638
- PDF (Español (España)) Descargas(Downloads): 453
Published
How to Cite
Issue
Section
License
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.