Experimental and Computational analysis of springback in dual phase steels

Análisis experimental y computacional de la recuperación elástica en aceros bifásicos


Authors

DOI:

https://doi.org/10.22517/23447214.24513

Keywords:

Springback, dual phase, Hill-48, dual phase steels

Abstract

In this work the comfortability of dual-phase automotive steel DP600 is studied through uniaxial tensile tests and V-die bending tests in different directions relative to the rolling direction. A microstructural analysis was also carried out in each characteristic region of the deformation zone, evidencing the changes in the morphology of the microstructure grains. Additionally, the plastic anisotropy of the material was studied by implementing the constitutive anisotropy models known as Hill-48 and Barlat-89. The results showed an increase in elastic recovery at 45 ° and 90 ° from the rolling direction. This variation can be attributed to the morphology of the martensite that created preferential location zones within the material during the rolling process. The two models Hill-48 and Barlat-89 correctly describe the yield surface and the plastic anisotropy obtained in the experimental tests carried out. The simulation using the finite element method and the Hill-48 model gave satisfactory results in the prediction of the elastic recovery as compared to the experimental results obtained with the V-die bending test.

Downloads

Download data is not yet available.

Author Biography

Rodolfo Rodríguez Baracaldo, Universidad Nacional de Colombia, Sede Bogotá.

Profesor Asociado, Departamento de Ingeniería Mecánica y Mecatrónica Grupo Investigación: Innovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM).

References

R. W. Logan, y W. F. Hosford, “Upper-bound anisotropic yield

locus calculations assuming 〈111〉-pencil glide.” International

Journal of Mechanical Sciences, vol. 22, no. 7, pp. 419-430, 1980

DOI: 10.1016/0020-7403(80)90011-9

M. Kleiner, M. Geiger, y A. Klaus, “Manufacturing of Lightweight

Components by Metal Forming,” CIRP Annals, vol. 52, no. 2, pp.

-542, 2003. DOI: 10.1016/S0007-8506(07)60202-9

H. Hayashi, y T. Nakagawa, “Recent trends in sheet metals and their

formability in manufacturing automotive panels,” Journal of

Materials Processing Technology, vol. 46, no. 3, pp.455-487, 1994.

DOI: 10.1016/0924-0136(94)90128-7

R. H. Wagoner, H. Lim, y M. G. Lee, “Advanced Issues in

springback,” International Journal of Plasticity, vol. 45, pp. 3-20,

DOI: 10.1016/j.ijplas.2012.08.006

D. Banabic, “Plastic Behaviour of Sheet Metal,” En D. Banabic

(Ed.), Sheet Metal Forming Processes: Constitutive Modelling and

Numerical Simulation (pp. 27-140). Springer. 2010. DOI:

/10.1007/978-3-540-88113-1_2

I. Burchitz. “Springback, improvement of its predictability:

Literature study report Netherlands Institute for Metals Research,”

B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, y S.

Jirathearanat, “Experimental and numerical investigation of

springback effect for advanced high strength dual phase steel,”

Materials & Design, vol. 39, pp. 318-328, 2012. DOI:

1016/j.matdes.2012.02.055

Y. Hou, J. Min, J. Lin, Z. Liu, J. E. Carsley, & T. B. Stoughton,

“Springback prediction of sheet metals using improved material

models,” Procedia Engineering, vol. 207, pp. 173-178. 2017. DOI:

1016/j.proeng.2017.10.757

S. Toros, A. Polat, y F. “Ozturk, Formability and springback

characterization of TRIP800 advanced high strength steel,”

Materials & Design, vol. 41, pp. 298-305, 2012. DOI:

1016/j.matdes.2012.05.006

F Gardiner. “The Springback of Metals,”Asme, vol. 79, no. 1, pp. 1-

1957.

R. Queener. “Elastic springback and residual stresses in sheet metal

formed by bending,” Asme, vol. 61, no. 1, pp. 757-768. 1968.

K. C. Chan, y S. H. Wang, “Theoretical analysis of springback in

bending of integrated circuit leadframes,” Journal of Materials

Processing Technology, vol. 91, no. 1, pp. 111-115, 1999.

DOI:10.1016/S0924-0136(98)00398-7

Y. Tozawa, “Forming technology for raising the accuracy of sheet-

formed products,” Journal of Materials Processing Technology,

vol. 22, no. 3, pp. 343-351, 1990. DOI:10.1016/0924-

(90)90020-U

T. X. Yu, y L. C. Zhang. “Plastic bending: Theory and applications,”

vol. 2, 1996.

K. Roll, y K. Weigand, “Tendencies and new requirements in the

simulation of sheet metal forming processes,” Computer Methods in

Materials Science, vol. 9, pp. 12-24. 2009.

I. Sarraf, y D. Green, “Prediction of DP600 and TRIP780 yield loci

using Yoshida anisotropic yield function,” IOP Conference Series:

Materials Science and Engineering, 418, 012089. 2018.

DOI:10.1088/1757-899X/418/1/012089

T. Uemori, S. Sumikawa, T. Naka, N. Ma, y F. Yoshida, “Influence

of Bauschinger Effect and Anisotropy on Springback of Aluminum

Alloy Sheets, “Materials Transactions, vol. 58, no. 6, pp. 921-926.

DOI:10.2320/matertrans.L-M2017812

R. Hill, “A theory of the yielding and plastic flow of anisotropic

metals,” Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences, 193(1033), pp. 281-297. 1948.

DOI:10.1098/rspa.1948.0045

W. F. Hosford, “A Generalized Isotropic Yield Criterion,” Journal

of Applied Mechanics, vol. 39, no. 2, pp. 607-609. 1972.

DOI:10.1115/1.3422732

F. Ozturk, S. Toros, y S. Kilic, “Effects of Anisotropic Yield

Functions on Prediction of Forming Limit Diagrams of DP600

Scientia et Technica Año XXVI, Vol. 26, No. 02, junio de 2021. Universidad Tecnológica de Pereira 145

Advanced High Strength Steel,”. Procedia Engineering, vol. 81, pp.

-765. 2014. DOI:10.1016/j.proeng.2014.10.073

S. A., Haus, “ Influência do efeito bauschinger no retorno elástico

em aços avançados de elevada resistência, ” Ph.D. dissertation,

Universidade federal do paraná. Brasil, 2011.

F. Barlat, y K. Lian, “Plastic behavior and stretchability of sheet

metals. Part I: A yield function for orthotropic sheets under plane

stress conditions,” International Journal of Plasticity, vol. 5, no. 5,

pp. 51-66. 1989. DOI: 10.1016/0749-6419(89)90019-3

P. A. Eggertsen, y K. Mattiasson, “On constitutive modeling for

springback analysis,” International Journal of Mechanical

Sciences, vol. 52, no. 6, pp. 804-818. 2010.

DOI:10.1016/j.ijmecsci.2010.01.008

S. Konzack, R. Radonjic, M. Liewald, y T. Altan. “Prediction and

reduction of springback in 3D hat shape forming of AHSS,”

Procedia Manufacturing, vol. 15, pp. 660-667. 2018. DOI:

1016/j.promfg.2018.07.296

L. Jayaharia, J. Gangadhara, S. Kumar, y B. Balunaik.

“Investigation of high temperature forming of ASS 304 using

BARLAT 3-Parameter Model,” Materials Today: Proceedings, vol.

, no. 2, pp. 799–804, 2017. DOI: 10.1016/j.matpr.2017.01.088

ASTM E8 / E8M-21, Standard Test Methods for Tension Testing of

Metallic Materials, ASTM International, West Conshohocken, PA,

ASTM International, West Conshohocken, PA, 2016.

DOI:10.1520/E0008_E0008M-21

ASTM E-517: Test Method for Plastic Strain Ratio r for Sheet

Metal. ASTM International, West Conshohocken, PA, 2016

DOI:10.1520/E0517-19

ASTM E1245–03 Standard Practice for Determining the Inclusion

or Second-Phase Constituent Content of Metals by Automatic Image

Analysis. ASTM International, West Conshohocken, PA, 2016.

https://doi.org/10.1520/E1245-03R16

Ansys licence academic (s. f.). 2020. Available:

https://www.ansys.com/academic, Accessed on: Jul. 5, 2020.

R. A. Dos Santos, “Influência da força pós dobra e da geometria da

ferramenta no retorno elástico em processos de dobramento de aços

de alta resistência, ” Ph.D. dissertation, Universidade federal do

paraná. Brasil, 2013.

Downloads

Published

2021-06-30

How to Cite

Rodríguez Baracaldo, R., Parra-Rodríguez, Y., & Arroyo-Osorio, J. M. (2021). Experimental and Computational analysis of springback in dual phase steels: Análisis experimental y computacional de la recuperación elástica en aceros bifásicos. Scientia Et Technica, 26(2), 137–145. https://doi.org/10.22517/23447214.24513