Application of Additive Manufacturing in the Manufacture of Ophthalmic Frames


Authors

DOI:

https://doi.org/10.22517/23447214.24562

Keywords:

Fabricación aditiva, Filamento de impresión 3D, Monturas oftálmicas.

Abstract

This study examines the properties of recycled polyethylene terephthalate (PET) filament applied to the manufacture of ophthalmic frames by additive manufacturing. Applied research from a quantitative approach was used under the multi-criteria decision-elimination and choice (AHP) method, to determine the best material. The results allowed obtaining a customized frame in recycled polyethylene terephthalate (PET) based on anthropometric measurements. The study concludes that 3D printing applied in manufacturing processes is an excellent option that responds to the demand for the new and sustainable alternative materials for 3D printing filaments, facilitating product customization. In addition, the tests carried out on the frames show that it meets the requirements for dimensional stability, sweat resistance, resistance to ignition, and good properties considered in the data obtained in the flexion, tension and impact tests.

Downloads

Download data is not yet available.

Author Biography

Luís Eduardo Díaz López, LED, Univesidad ECCI

Professional in Industrial Engineering, graduated from ECCI University in 2020. Technologist in industrial process management. Young researcher of the GIII-ECCI research group. He currently holds a management position in an ophthalmic company in Bogotá-Colombia.

References

[1] M. K. J. E. Exconde, J. A. A. Co, J. Z. Manapat, and E. R. Magdaluyo, “Materials Selection of 3D Printing Filament and Utilization of Recycled Polyethylene Terephthalate (PET) in a Redesigned Breadboard,” Procedia CIRP, vol. 84, pp. 28 32, 2019, doi: https://doi.org/10.1016/j.procir.2019.04.337.

[2] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” Int. J. Prod. Econ., vol. 204, pp. 383–394, Oct. 2018, doi: 10.1016/j.ijpe.2018.08.019.

[3] M. A. Gibson et al., “3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses,” Mater. Today, vol. 21, no. 7, pp. 697–702, 2018, doi: https://doi.org/10.1016/j.mattod.2018.07.001.

[4] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: A critical review,” Int. J. Adv. Manuf. Technol., vol. 83, no. 1–4, pp. 389–405, 2016, doi: 10.1007/s00170-015-7576-2.

[5] S. Ford and M. Despeisse, “Additive manufacturing and sustainability: an exploratory study of the advantages and challenges,” J. Clean. Prod., vol. 137, pp. 1573–1587, 2016, doi: 10.1016/j.jclepro.2016.04.150.

[6] Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit. Manuf., vol. 30, no. September, p. 100861, 2019, doi: 10.1016/j.addma.2019.100861.

[7] U. M. Dilberoglu, B. Gharehpapagh, U. Yaman, and M. Dolen, “The Role of Additive Manufacturing in the Era of Industry 4.0,” Procedia Manuf., vol. 11, no. June, pp. 545–554, 2017, doi: 10.1016/j.promfg.2017.07.148.

[8] J. Straub, “Initial work on the characterization of additive manufacturing (3D printing) using software image analysis,” Machines, vol. 3, no. 2, pp. 55–71, 2015, doi: 10.3390/machines3020055.

[9] R. M. Zaki et al., “Direct 3D-printing of phosphate glass by fused deposition modeling,” Mater. Des., vol. 194, p. 108957, 2020, doi: 10.1016/j.matdes.2020.108957.

[10] F. M. Yu, K. W. Jwo, R. S. Chang, and C. T. Tsai, “Dispensing technology of 3D printing optical lens with its applications,” Energies, vol. 12, no. 16, pp. 1–14, 2019, doi: 10.3390/en12163118.

[11] A. Camposeo et al., “3D printing of optical materials: an investigation of the microscopic properties,” no. February 2018, p. 29, 2018, doi: 10.1117/12.2290495.

[12] D. Bradley, “3D printing transparent glass,” Mater. Today, vol. 18, no. 10, pp. 531–532, 2015, doi: https://doi.org/10.1016/j.mattod.2015.10.017.

[13] Y. Shen, Y. Li, C. Chen, and H.-L. Tsai, “3D printing of large, complex metallic glass structures,” Mater. Des., vol. 117, pp. 213–222, 2017, doi: https://doi.org/10.1016/j.matdes.2016.12.087.

[14] S. C. Hereida Pichucho and M. Gomez, “Estudio de materiales polímeros y su compatibilidad con el rostro humano en pacientes usuarios de correcciones ópticas en la ciudad de quito, 2017-2018. Creación de monturas en 3d con dos tipos de polímeros y su compatibilidad con el rostro humano,” Tecnológico Superior Cordillera, 2018.

[15] F. L. Brodie et al., “Computed tomography–based 3D modeling to provide custom 3D-printed glasses for children with craniofacial abnormalities,” J. AAPOS, vol. 23, no. 3, pp. 165-167.e1, Feb. 2019, doi: 10.1016/j.jaapos.2019.01.010.

[16] J. Moreno, “El Proceso Análitico Jerárquico (AHP). Fundamentos, metodologías y aplicaciones.,” Recta monográfico, vol. 1, pp. 21–53, 2002.

[17] Beltrán Rico Maribel and Marcilla Gomis Antonio, Tecnología de polímeros - Publicaciones y ediciones digitales de la Universidad de Alicante. 2012.

[18] R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo, and F. Fraternali, “Multi-material additive manufacturing of sustainable innovative materials and structures,” Polymers (Basel)., vol. 11, no. 1, pp. 1–14, 2019, doi: 10.3390/polym11010062.

[19] G. B. Castro, L. O. Carmona, and J. O. Florez, “Production and characterization of the mechanical and thermal properties of expanded polystyrene with recycled material,” Ing. y Univ., vol. 21, no. 2, pp. 177–194, 2017, doi: 10.11144/javeriana.iyu21-2.mtpe.

[20] S. Wu, G. Lu, Q. Liu, P. Liu, and J. Yang, “Sustainable High-Ductility Concrete with Rapid Self-Healing Characteristic by Adding Magnesium Oxide and Superabsorbent Polymer,” Adv. Mater. Sci. Eng., vol. 2020, 2020, doi: 10.1155/2020/5395602.

[21] T. Mukherjee, W. Zhang, and T. DebRoy, “An improved prediction of residual stresses and distortion in additive manufacturing,” Comput. Mater. Sci., vol. 126, pp. 360–372, 2017, doi: 10.1016/j.commatsci.2016.10.003.

[22] Z. Wang, E. Denlinger, P. Michaleris, A. D. Stoica, D. Ma, and A. M. Beese, “Residual stress mapping in Inconel 625 fabricated through additive manufacturing: Method for neutron diffraction measurements to validate thermomechanical model predictions,” Mater. Des., vol. 113, pp. 169–177, 2017, doi: 10.1016/j.matdes.2016.10.003.

Downloads

Published

2021-12-01

How to Cite

Buitrago Pulido , R. D., & Díaz López, L. E. (2021). Application of Additive Manufacturing in the Manufacture of Ophthalmic Frames. Scientia Et Technica, 26(04), 461–466. https://doi.org/10.22517/23447214.24562