the Characterization of high school students in the department of Risaralda using the Chi-Square metric

Caracterización de los estudiantes de educación media en el departamento de Risaralda usando la métrica Chi-Square


Authors

DOI:

https://doi.org/10.22517/23447214.24587

Keywords:

Education, Machine Learning, relevance analysis, Big Data, ICFES, Chi-square.

Abstract

The education is a fundamental law that promotes the social and economic development of a nation. Also, it is how a country can achieve its sustainable development objectives. Because of this, various international organizations (Unicef-UNESCO- Banco Mundial -OECD) are promoting the coverage of education in underdeveloped countries. On the other hand, projects such as PISA that aim to carry out annual evaluations in more than 30 countries that serve as a reference of the educational level and encourages nations to improve the quality of education. Therefore, the objective of this work is to implement a methodology to predict the results of ICFES tests SABER 11 °. that can correct the educational problems that Colombia has presented in secondary education. For the development of this methodology, the ICFES repository database was used. Data were pre-processed using MATLAB software. Also, combined tests were carried out with the new Chi-Square metric developed by the researchers of the automation group of the Technological University of Pereira, obtaining results that were 20% higher compared with conventional classification techniques. In this project, the most influential characteristics were found in the students, who are responsible for the loss of the ICFES SABER 11° exam in Risaralda.

Downloads

Download data is not yet available.

Author Biographies

Luis Ariosto Serna Cardona, Universidad Tecnologica de pereira

Luis Ariosto Serna Cardona received his undergraduate degree in physical engineering (2017) from the Universidad Tecnológica de Pereira. Currently, his M.Sc.(c) in engineering from the same university, is a research professor at CIAF higher education.
Research interests: machine learning and deep learning.

Kevin Alejandro Hernández Gómez, Ing., Universidad Tecnológica de Pereira

Luis Ariosto Serna Cardona received his undergraduate degree in physical engineering (2017) from the Universidad Tecnológica de Pereira. Currently, his M.Sc.(c) in engineering from the same university, is a research professor at CIAF higher education.
Research interests: machine learning and deep learning.

Álvaro Ángel Orozco Gutiérrez, Dr., Universidad Tecnológica de Pereira

Álvaro Orozco-Gutierrez received his undergraduate degree in electrical engineering (1985) and his M.Sc. degree in engineering (2004) from the Universidad Tecnológica de Pereira, and his Ph.D. in bioengineering (2009) from the Universidad Politécnica de Valencia (Spain). He received his undergraduate degree in law (1996) from Universidad Libre de Colombia. Currently, he is a Professor in the Department of Electrical Engineering at the Universidad Tecnológica de Pereira. Research interests: machine learning and bioengineering.

References

"Support Sustainable Development and Climate Action | United Nations." https://www.un.org/en/our-work/support-sustainable-development-and-climate-action (accessed Jul. 03, 2021).

A. Maldonado-maldonado, C. Rodríguez-sabiote, and I. Introducción, "Los organismos internacionales y la educación en México. El caso de la educación superior y el Banco Mundial," Perfiles Educ., vol. 22, no. 87, pp. 51-75, 2000.

J. M. Redondo, "EL EXPERIMENTO CHILENO EN EDUCACIÓN: ¿Conduce a mayor equidad y calidad en la educación?," 2005. DOI: 10.4067/s0718-22362005000100005

https://doi.org/10.4067/S0718-22362005000100005

Banco Mundial, "Gasto público en educación, total (% del PIB) | Data," Instituto de Estadística de la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO), 2018. https://datos.bancomundial.org/indicador/SE.XPD.TOTL.GD.ZS?end=2019&most_recent_value_desc=true&start=2019&view=map%0Ahttps://datos.bancomundial.org/indicator/SE.XPD.TOTL.GD.ZS?end=2019&start=1970%0Ahttps://datos.bancomundial.org/indicador/SE.XPD.TOTL.GD. (accessed Jul. 08, 2021).

R. Turner, "El Programa Internacional para la Evaluación de los Alumnos (PISA). Una perspectiva general," Rev. Educ., vol. 2006, pp. 45-74, 2006.

OECD, "Education in Colombia, Reviews of National Policies for Education." OECD Publishing Paris, 2016. DOI: https://doi.org/10.1787/9789264250604-en

https://doi.org/10.1787/9789264250604-en

S. Acevedo and A. Jaramillo, "Perfil socioeconómico de los estudiantes de pregrado EAFIT." Recuperado el, 2007.

N. G. Armenta, C. C. Pacheco, and E. D. Pineda, "Factores socioeconómicos que intervienen en el desempeño académico de los estudiantes universitarios de la Facultad de Ciencias Humanas de la Universidad Autónoma de Baja California," Rev. Investig. en Psicol., vol. 11, no. 1, p. 153, 2014. DOI: 10.15381/rinvp.v11i1.3888

https://doi.org/10.15381/rinvp.v11i1.3888

J. Caso Niebla and L. Hernández Guzman, "Available in: http://www.redalyc.org/articulo.oa?id=80539304," Rev. Latinoam. Psicol., pp. 487-501, 2007.

K. Contreras, C. Caballero, J. Palacio, and A. M. Pérez, "Factores asociados al fracaso académico en estudiantes universitarios de Barranquilla (Colombia)," Psicol. desde el Caribe, vol. 0, no. 0, pp. 110-135, 2008.

G. M. G. Vargas and F. R. Estrada, "Desafíos y problemáticas de la gestión universitaria en el sistema de la educación superior pública, aspectos a considerar en la región centroamericana," Rev. Gestão Univ. na América Lat. - GUAL, pp. 231-258, 2013, doi: 10.5007/1983-4535.2013v6n2p231.

https://doi.org/10.5007/1983-4535.2013v6n2p231

E. H. Padilla and M. J. G. Montesinos, "Modelo de ecuación estructural que evalúa las relaciones entre el estatus cultural y económico del estudiante y el logro educativo," Rev. Electron. Investig. Educ., vol. 13, no. 2, pp. 188-203, 2011.

ICFES, "Acceso a Bases de datos y diccionarios - Portal Icfes," 2020. https://www.icfes.gov.co/investigadores-y-estudiantes-posgrado/acceso-a-bases-de-datos (accessed Jul. 08, 2021).

L. Ariosto et al., "Classification of Categorical Data Based on the Chi-Square Dissimilarity and t-SNE," Computation, 2020. doi: 10.3390/computation8040104

https://doi.org/10.3390/computation8040104

A. Martínez, Un análisis del efecto de pares sobre el rendimiento académico para Colombia. 2012.

R. Aguilar, H. D. Vargas-Cardona, A. M. Álvarez, Á. A. Orozco, and P. Navarro, "Automatic Identification of DBS Parameters from the Volume of Tissue Activated (VTA) Using Support Vector Machines," in Iberoamerican Congress on Pattern Recognition, 2018, pp. 740-747.

https://doi.org/10.1007/978-3-030-13469-3_86

R. T. PEREIRA2, - ANDRÉS CALDERÓN ROMERO3, and J. J. TOLEDO4, "Aplicación de la minería de datos HQ OD H [ WUDFFLyQ GH SHUÀOHV de deserción estudiantil * 1 [ Application of data mining in Resumen Introducción," Vent. Informática, no. 28, pp. 31-47, 2013, [Online].

R. T. Pereira, A. C. Romero, and J. J. Toledo, "La Minería De Datos Como Un Método Innovador Para La Detección De Patrones De Deserción Estudiantil En Programas De Pregrado En Instituciones De Educación Superior," Asoc. Colomb. Fac. Ing. (ACOFI), Int. Fed. Eng. Educ. Soc. (IFEES, p. 9, 2013, [Online]. Available: https://www.acofipapers.org/index.php/acofipapers/2013/paper/viewFile/211/112.

A. Kamagate, "Análisis de la deserción estudiantil en la Universidad Simón Bolívar, facultad Ingeniería de Sistemas, con técnicas de minería de datos," Rev. Pensam. Am., vol. 6, no. 10, pp. 41-51, 2013.

S. Valero, A. Salvador, and M. García, "Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos," Recur. Digit. para la Educ. y la Cult., pp. 33-39, 2010.

L. A. Serna, K. A. Hernández, and P. N. González, "A K-Means Clustering Algorithm: Using the Chi-Square as a Distance," in International Conference on Human Centered Computing, pp. 464-470, 2018. Doi: https://doi.org/10.1007/978-3-030-15127-0_46

https://doi.org/10.1007/978-3-030-15127-0_46

C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995. DOI: https://doi.org/10.1007/BF00994018

https://doi.org/10.1007/BF00994018

M. Hu, Y. Chen, and J. T. Y. Kwok, "Building sparse multiple-kernel SVM classifiers," IEEE Trans. Neural Networks, vol. 20, no. 5, pp. 827-839, 2009. DOI: 10.1109/TNN.2009.2014229

https://doi.org/10.1109/TNN.2009.2014229

Downloads

Published

2021-06-30

How to Cite

Serna Cardona, L. A., Hernández Gómez, K. A., & Orozco Gutiérrez, Álvaro Ángel. (2021). the Characterization of high school students in the department of Risaralda using the Chi-Square metric: Caracterización de los estudiantes de educación media en el departamento de Risaralda usando la métrica Chi-Square. Scientia Et Technica, 26(2), 119–126. https://doi.org/10.22517/23447214.24587