Recognition of Weeds Associated with Coffee Crops by Use of Co-occurrence Matrices, Texture Analysis and Machine Learning


Authors

DOI:

https://doi.org/10.22517/23447214.24589

Keywords:

Coffee, Weed Recognition, Texture Analysis, Machine Learning.

Abstract

The present work presents the results of twenty-four experiments realized for recognition of two classes of weed leaves associated with coffee crops. 210 images were acquired, 70 for each weed class, and 70 for coffee leaves samples. All images were processing and transformed into HSV color format. From each image, 33 texture patterns were extracted, which were reduced to four through principal component analysis. The fractal dimension was added as a fifth pattern. The recognition was done through the implementation of three machine learning techniques, support vector machine (SVM), k-near neighbors (KNN), and artificial neuronal network.  Machine learning techniques permitted classification with precision and recall upper or equal to 95%, on average, when the fractal dimension was not used, and upper or equal to 97% on average when the fractal dimension was used. SVM and ANN were methods with better outcomes. Experiments constitute a first approximation to the implementation of an automatic system for selective weed eradication in a coffee crop.

Downloads

Download data is not yet available.

References

Y. Blanco and Á. Leyva, “Las Arvenses En El Agroecosistema Y Sus Beneficios Naturales,” Cultivos Tropicales, vol. 28, no. 2, pp. 21–28, 2007, doi: http://dx.doi.org/10.13140/RG.2.2.10964.19844.

E. Gamboa and L. Sánchez, “Control de malezas con herbicidad y métodos mecánicos en plantaciones jóvenes de café,” Bioagro, vol. 16, no. 2, pp. 133–136, 2004.

A. Anzalone and A. Silva, “Evaluación de herbicidas sulfonilureas para el control de malezas en cafetales,” Bioagro, vol. 22, no. 2, pp. 95–104, 2010.

CENICAFE, “Manejo de las malezas o arvenses en los cafetales,” 2004, CENICAFÉ.

C. P. de Souza, T. de A. Guedes, and C. S. Fontanetti, “Evaluation of herbicides action on plant bioindicators by genetic biomarkers: a review,” Environmental Monitoring and Assessment, vol. 188, no. 12, 2016, doi: 10.1007/s10661-016-5702-8.

R. Hoagland and D. B. Clyde, “Controlling herbicide-susceptible, -tolerant and -resistant weeds with microbial bioherbicides,” Outlooks on Pest Management, vol. 27, pp. 196–197, 2016, doi: 10.1564/v27_dec_04.

W. T. Tsai, “Status of herbicide use, regulatory management and case study of paraquat in Taiwan,” Environment, Development and Sustainability, vol. 22, no. 3, pp. 2673–2683, 2018, doi: 10.1007/s10668-018-0293-x.

M. Bilal, H. M. N. Iqbal, and D. Barceló, “Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems,” Science of the Total Environment, vol. 695, 2019, doi: 10.1016/j.scitotenv.2019.133896.

N. M. Freitas, F. C. L. Freitas, I. F. Furtado, M. F. F. Teixeira, and V. F. Silva, “Herbicide mixtures to control dayflowers and drift effect on coffee cultures,” Planta Daninha, vol. 36, 2018, doi: 10.1590/S0100-83582018360100047.

P. V. da Silva, G. C. Barbosa, A. Ferrari, S. M. Tronquini, and P. A. Monquero, “Chemical control strategies of commelina benghalensis in coffee crop,” Coffee Science, vol. 14, no. 2, pp. 231–239, 2019, doi: 10.25186/cs.v14i2.1576.

X. M. de S. Vilela, F. C. L. de Medeiros, A. H. Gonçalves, and L. C. da Silva, “Quizalofop-p-ethyl controlling sourgrass (Digitariavilela insularis)x. m.andde s. egoosegrass (eleusine indica) in infested coffee areas,” Coffee Science, vol. 14, no. 4, pp. 530–537, 2019, doi: 10.25186/cs.v14i4.1646.

J. A. López, D. Villalba, L. F. Salazar, and O. A. Cárdenas, “Manejo integrado de arvenses en el cultivo de café Nueva alternativa de control químico,” Avances Técnicos Cenicafé, pp. 1–8, 2012.

A. Anzalone, M. Arizaleta, and J. Vargas, “Respuesta del cafeto (Coffea arabica) ‘catuaí’ a los herbicidas glifosato, clomazone, linuron, 2,4-D, metsulfuron-metil, rimsulfuron y clorimuron-etil,” Bioagro, vol. 26, no. 1, pp. 3–12, 2014.

H. Menza and L. F. Salazar, “Estudios de resistencia al glifosato en tres arvenses de la zona cafetera colombiana y alternativas para su manejo,” Avances Técnicos Cenicafé, no. 350, 2006.

C. Martínez, “Taller sobre : “ Impactos toxicológicos y ecotoxicológicos asociados ‘ Efectos tóxicos del glifosato y sus formulaciones comerciales ,’” 2011, Facultad de Agronomía Universidad de la República de Uruguay.

M. Arizaleta, A. Anzalone, and A. Silva, “Efecto del uso de metsulfuron-metil y glifosato sobre malezas asociadas a cafetales en venezuela,” Bioagro, vol. 20, no. 2, pp. 79–88, 2008.

J. A. García, E. Alarcón, Y. Hernández, and C. Hernández, “Impact of litter contaminated with glyphosate-based herbicide on the performance of Pontoscolex corethrurus, soil phosphatase activities and soil pH,” Applied Soil Ecology, vol. 104, no. 2015, pp. 31–41, 2016, doi: 10.1016/j.apsoil.2016.03.007.

R. Melloni, E. M. Silve, M. I. N. Alvarenga, E. G. P. Melloni, and E. N. de Alcântara, “Impact of weedcontrol on amf propagules and mycorrhization of coffee trees,” Coffee Science, vol. 12, no. 2, pp. 207–215, 2017.

J. C. Niemeyer, F. B. de Santo, N. Guerra, A. M. Ricardo Filho, and T. M. Pech, “Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment,” Chemosphere, vol. 198, pp. 154–160, 2018, doi: 10.1016/j.chemosphere.2018.01.127.

P. De Pádua Marafeli, P. R. Reis, L. F. De Oliveira Bernardi, E. N. De Alcântara, and P. A. Martinez, “Effects of weed management on soil mites in coffee plantations in a neotropical environment,” Neotropical Biology and Conservation, vol. 14, no. 2, pp. 275–289, 2019, doi: 10.3897/neotropical.14.e38094.

C. B. de Novais, L. Avio, M. Giovannetti, S. M. de Faria, J. O. Siqueira, and C. Sbrana, “Interconnectedness, length and viability of arbuscular mycorrhizal mycelium as affected by selected herbicides and fungicides,” Applied Soil Ecology, vol. 143, no. June, pp. 144–152, 2019, doi: 10.1016/j.apsoil.2019.06.013.

S. Pochron et al., “Temperature and body mass drive earthworm (Eisenia fetida) sensitivity to a popular glyphosate-based herbicide,” Applied Soil Ecology, vol. 139, no. March, pp. 32–39, 2019, doi: 10.1016/j.apsoil.2019.03.015.

J. A. García-Pérez, E. Alarcón-Gutiérrez, and F. Díaz-Fleischer, “Interactive effect of glyphosate-based herbicides and organic soil layer thickness on growth and reproduction of the tropical earthworm Pontoscolex corethrurus (Müller, 1857),” Applied Soil Ecology, vol. 155, no. July 2019, p. 103648, 2020, doi: 10.1016/j.apsoil.2020.103648.

Y. P. Setyawan, M. Naim, A. D. Advento, and J. P. Caliman, “The effect of pesticide residue on mortality and fecundity of Elaeidobius kamerunicus (Coleoptera: Curculionidae),” IOP Conference Series: Earth and Environmental Science, vol. 468, no. 1, 2020, doi: 10.1088/1755-1315/468/1/012020.

G. Belutti et al., “Phytotoxicity and Growth of Coffee Plants As a Function of The Application of Herbicide 2,4-D,” Coffee Science, vol. 14, no. 4, pp. 438–445, 2019.

D. Toledo, A. de Oliveira, G. Belutti, T. Teruel, P. Menicucci, and R. J. Guimarães, “Growth, anatomy and physiology of coffee plants intoxicated by the herbicide glyphosate,” Coffee Science, vol. 14, no. 1, pp. 76–82, 2019, doi: 10.25186/cs.v14i1.1530.

D. Toledo et al., “Selectivity of the herbicide chlorimuron ethylcastanhon young coffee plants,” Coffee Science, vol. 14, no. 4, pp. 467–472, 2019, doi: 10.25186/cs.v14i4.1615.

L. Parra, J. Marin, S. Yousfi, G. Rincón, P. V. Mauri, and J. Lloret, “Edge detection for weed recognition in lawns,” Computers and Electronics in Agriculture, vol. 176, no. July, 2020, doi: 10.1016/j.compag.2020.105684.

C. A. Pulido-Rojas, M. A. Molina-Villa, and L. E. Solaque-Guzmán, “Machine vision system for weed detection using image filtering in vegetables crops,” Revista Facultad de Ingenieria, vol. 2016, no. 80, pp. 124–130, 2016, doi: 10.17533/udea.redin.n80a13.

X. E. Pantazi, D. Moshou, and C. Bravo, “Active learning system for weed species recognition based on hyperspectral sensing,” Biosystems Engineering, vol. 146, pp. 193–202, 2016, doi: 10.1016/j.biosystemseng.2016.01.014.

R. Raja et al., “Crop signalling: A novel crop recognition technique for robotic weed control,” Biosystems Engineering, vol. 187, pp. 278–291, 2019, doi: 10.1016/j.biosystemseng.2019.09.011.

A. dos Santos Ferreira, D. M. Freitas, G. G. da Silva, H. Pistori, and M. T. Folhes, “Unsupervised deep learning and semi-automatic data labeling in weed discrimination,” Computers and Electronics in Agriculture, vol. 165, no. July, 2019, doi: 10.1016/j.compag.2019.104963.

T. Kounalakis, G. A. Triantafyllidis, and L. Nalpantidis, “Deep learning-based visual recognition of rumex for robotic precision farming,” Computers and Electronics in Agriculture, vol. 165, no. August, 2019, doi: 10.1016/j.compag.2019.104973.

J. Yu, S. M. Sharpe, A. W. Schumann, and N. S. Boyd, “Deep learning for image-based weed detection in turfgrass,” European Journal of Agronomy, vol. 104, no. November 2018, pp. 78–84, 2019, doi: 10.1016/j.eja.2019.01.004.

K. Hu, G. Coleman, S. Zeng, Z. Wang, and M. Walsh, “Graph weeds net: A graph-based deep learning method for weed recognition,” Computers and Electronics in Agriculture, vol. 174, no. April, 2020, doi: 10.1016/j.compag.2020.105520.

H. Jiang, C. Zhang, Y. Qiao, Z. Zhang, W. Zhang, and C. Song, “CNN feature based graph convolutional network for weed and crop recognition in smart farming,” Computers and Electronics in Agriculture, vol. 174, no. April, p. 105450, 2020, doi: 10.1016/j.compag.2020.105450.

R. Raja, T. T. Nguyen, D. C. Slaughter, and S. A. Fennimore, “Real-time weed-crop classification and localisation technique for robotic weed control in lettuce,” Biosystems Engineering, vol. 192, pp. 257–274, 2020, doi: 10.1016/j.biosystemseng.2020.02.002.

R. Raja, T. T. Nguyen, V. L. Vuong, D. C. Slaughter, and S. A. Fennimore, “RTD-SEPs: Real-time detection of stem emerging points and classification of crop-weed for robotic weed control in producing tomato,” Biosystems Engineering, vol. 195, pp. 152–171, 2020, doi: 10.1016/j.biosystemseng.2020.05.004.

T. Ashraf and Y. N. Khan, “Weed density classification in rice crop using computer vision,” Computers and Electronics in Agriculture, vol. 175, no. June, 2020, doi: 10.1016/j.compag.2020.105590.

D. G. Kim, T. F. Burks, J. Qin, and D. M. Bulanon, “Classification of grapefruit peel diseases using color texture feature analysis,” International Journal of Agricultural and Biological Engineering, vol. 2, no. 3, pp. 41–50, 2009, doi: 10.3965/j.issn.1934-6344.2009.03.041-050.

A. Cravero, S. Pardo, S. Sepúlveda, and L. Muñoz, “Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review,” Mar. 01, 2022, MDPI. doi: 10.3390/agronomy12030748.

P. Dini and S. Saponara, “Analysis, design, and comparison of machine-learning techniques for networking intrusion detection,” Designs (Basel), vol. 5, no. 1, pp. 1–22, 2021, doi: 10.3390/designs5010009.

C. Ji, T. B. Mudiyanselage, Y. Gao, and Y. Pan, “A review of infant cry analysis and classification,” Dec. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s13636-021-00197-5.

I. Attri, L. K. Awasthi, and T. P. Sharma, “Machine learning in agriculture: a review of crop management applications,” Multimed Tools Appl, vol. 83, no. 5, pp. 12875–12915, Feb. 2024, doi: 10.1007/s11042-023-16105-2.

M. J. Al Dujaili, A. Ebrahimi-Moghadam, and A. Fatlawi, “Speech emotion recognition based on SVM and KNN classifications fusion,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 1259–1264, Apr. 2021, doi: 10.11591/ijece.v11i2.pp1259-1264.

Y. Mu et al., “DenseNet weed recognition model combining local variance preprocessing and attention mechanism,” Front Plant Sci, vol. 13, Jan. 2023, doi: 10.3389/fpls.2022.1041510.

M. H. Saleem, J. Potgieter, and K. M. Arif, “Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments,” Dec. 01, 2021, Springer. doi: 10.1007/s11119-021-09806-x.

S. Khan, M. Tufail, M. T. Khan, Z. A. Khan, and S. Anwar, “Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer,” Precis Agric, vol. 22, no. 6, pp. 1711–1727, Dec. 2021, doi: 10.1007/s11119-021-09808-9.

Downloads

Published

2024-12-19

How to Cite

MUÑOZ NEIRA, M. J. (2024). Recognition of Weeds Associated with Coffee Crops by Use of Co-occurrence Matrices, Texture Analysis and Machine Learning. Scientia Et Technica, 29(4), 158–166. https://doi.org/10.22517/23447214.24589

Issue

Section

Sistemas y Computación