Modelling, design, and construction of a wrist rehabilitation exoskeleton


Authors

DOI:

https://doi.org/10.22517/23447214.24748

Keywords:

Rehabilitation robotics, wearable robotics, radiocarpal joint, model, Euler-Lagrange, Simulink, control, Arduino, MIT App Inventor

Abstract

Este trabajo presenta el modelado, diseño, construcción y control de un exoesqueleto de rehabilitación de flexión/extensión y abducción/aducción de la articulación de la muñeca. Los modelos dinámicos de los movimientos de la muñeca se obtienen utilizando la formulación de Euler-Lagrange y se construyen en Simulink de MATLAB junto con un control PID de lazo cerrado que representa el control neuromusculoesquelético natural humano. Se realizan simulaciones para estimar el torque articular requerido para producir los movimientos funcionales de la muñeca en un adulto colombiano promedio. El exoesqueleto está diseñado en el software CAD SolidWorks, construido mediante impresión 3D en ácido poliláctico (PLA), alimentado por dos servomotores a bordo y controlado por una placa Arduino UNO que establece comunicación con una aplicación móvil Android desarrollada en MIT App Inventor para ingresar los parámetros de la terapia de rehabilitación.

Downloads

Download data is not yet available.

References

[1] C. E. Medina-Gonzalez, M. Benet-Rodriguez, and F. Marco-Martínez, “The wrist joint complex: anatomical, physiological and biomechanical aspects, characteristics, classification, and treatment of distal radius fractures,” MediSur, vol. 14, no. 4, pp. 430-446, 2016.

[2] C. A. Oatis, Kinesiology: the mechanics and pathomechanics of human movements, 2nd ed., USA: Lippincott Williams & Wilkin, 2009.

[3] M. A. Chávez-Cardona, F. Rodríguez-Spitia, and A. Baradica-López, “Exoskeletons to enhance human capabilities and support rehabilitation: a state of the art,” Rev. Ing. Biomed., vol. 4, no. 7, pp. 69-80, 2011.

[4] K. Serbest, M. Cilli, and O. Eldogan, “A dynamic virtual hand model for estimating joint torques during the wrist and finger movements,” J. Eng. Sci. Technol., vol. 13, no. 6, pp. 1665-1675, 2018.

[5] G. Mansour, S. Mitsi, and K. D. Bouzakis, “A kinematic and dynamic model of the human upper extremity,” in Proc. 3rd ICMEN, Chalkidiki, Greece, 2008, pp. 885-892.

[6] M. C. Agarana and E. T. Akinlabi, “Mathematical modelling and analysis of human arm as a triple pendulum system using Euler-Lagrangian model,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 413, 2018.

[7] E. Peña-Pitarch, N. T. Falguera, and J. Yang, “Virtual human hand: model and kinematics,” Comp. Methods Biomech. Biomed. Eng., pp. 1-12, 2012.

[8] L. Mazia, M. Casadio, P. Morasso, G. Sandini, and P. Giannoni, “Adaptive training strategy of distal movements by means of a wrist-robot,” in 2nd ACHI, Cancun, Mexico, 2009.

[9] A. Gupta, M. K. O’Malley, V. Patoglu, and C. Burgar, “Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training,” Int. J. Robot. Res, vol. 27, pp. 233-250, 2009.

[10] E. J. Torres-Sarmiento, D. C. Martínez-Peon, B. C. Hernández-Hernández, and C. D. Ramos-Villa, “Diseño y modelado de un exoesqueleto de muñeca y antebrazo para rehabilitación motora en pacientes con enfermedad vascular cerebral,” Memorias del Congreso Nacional de Ingeniería Biomédica, vol. 5, no. 1, pp. 346-349, 2018.

D. Serrano, D. S. Copaci, L. Moreno, and D. Blanco, “SMA based wrist exoskeleton for rehabilitation therapy,” in 2018 IEEE/RSJ Int. Conf. IROS, 2018, pp. 2318-2323.

J. Allington, S. J. Spencer, J. Klein, M. Buell, D. J. Reinkensmeyer, and J. Bobrow, “Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke,” in 33rd Int. Conf. IEEE EMBS, USA, 2011, pp. 1579-1582.

[13] D. A. Winter, Biomechanics and motor control of human movement, 4th ed., USA: John Wiley & Sons, Inc., 2009.

[14] Y. Li, C. Xu, and X. Guan, “Modeling and simulation study of electromechanically system of the human extremity exoskeleton”, J. Vibroengineering, vol. 18, no. 1, pp. 551-661, 2020.

[15] M, Oluwatsin, “Modelling and control of actuated lower limb exoskeletons: a mathematical application using central pattern generators and nonlinear feedback control techniques”, Ph.D. dissertation, Tshwane University of Technology, 2016.

[16] C. Borrás, J. L. Sarmiento, and J. F. Ortiz, “Dynamic model and control design for a nonlinear hydraulic actuator”, in Proc. ASME 2018 ICMCE, USA, 2018.

[17] R. A. Chaurand, L. R. Prado, and E. L. González, Dimensiones antropométricas de la población latinoamericana, México: Universidad de Guadalajara, 2007.

[18] MG996R High Torque Metal Gear Dual Ball Bearing Servo, Lofty Ambition, Electrónicos Caldas, [Online] Available: https://www.electronicoscaldas.com/datasheet/MG996R_Tower-Pro.pdf

[19] . L. Sarmiento and C. Borrás, “Modelling, design and analysis of three controllers based on LQR formulation for a non-linear hydraulic uniaxial seismic shake table”, E3S Web of Conferences, 95, 2019.

[20] C. Borrás, J. L. Sarmiento, and R. D. Guiza, “Modelling, system identification and position control based on LQR formulation for an electro-hydraulic servo system”, in Proc. ASME 2019 ICMCE, USA, 2019.

[21] J. L. Sarmiento-Ramos, “Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica,” Rev. UIS Ing., vol. 19, no. 4, pp. 1-18, 2020.

[22] Z. Taha, A. Abdul, M. Y. Wong, M.A. Hashem, I. M. Kahiruddin, and M. A. Mohd, “Modelling and control of an upper extremity exoskeleton for rehabilitation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 114, 2016.

Downloads

Published

2022-09-30

How to Cite

Sarmiento Ramos, J. L., & Anaya Rojas, M. F. (2022). Modelling, design, and construction of a wrist rehabilitation exoskeleton . Scientia Et Technica, 27(3), 177–185. https://doi.org/10.22517/23447214.24748