Synthesis and characterization of cellular Aluminum-Silicon metals with Open-Pore
DOI:
https://doi.org/10.22517/23447214.24775Keywords:
Cellular metals, compressive testing, energy absorption, infiltration of removable fillers, interconnected pore, mechanical propertiesAbstract
This work shows the experimental results obtained from the manufacture and characterization of cellular metals with open or interconnected pore. As a base metal we use an aluminum-silicon alloy for casting and for manufacturing we use the modified removable filler infiltration technique. As a filler material, high purity sea salt with three particle size ranges was used. The samples obtained were characterized in terms of their morphology and pore topology using Scanning Electron Microscopy. Using simple mathematical models, structural characteristics such as density, relative density and percentage of porosity were determined. Based on quasi-static compression tests, stress-strain curves were constructed and mechanical properties such as stiffness, plateau stress, densification deformation and mechanical energy absorption capacity of these materials were obtained. The results show that increasing the pore size increases density, relative density and decreases porosity and energy absorption capacity.
Downloads
References
[1]. Gutiérrez Vásquez, J. A., & Oñoro, J. "Espumas de aluminio: fabricación, propiedades y aplicaciones". Revista de metalúrgia, pp. 457-476, 2008. DOI: https://doi.org/10.3989/revmetalm.0751
[2]. Gibson LJ, Ashby MF. "Cellular Solids: Structure and Properties." Cambridge, UK: Cambridge Univ. Press, 2nd ed, 1997. DOI: https://doi.org/10.1017/CBO9781139878326
[3]. Vesenjak, M., Sulong, M. A., Krstulovik-Opara, L., Borovinsek, M., Mathier, V., & Fiedler, T. "Dynamic compression of aluminium foam derived from infiltration casting of salt dough". Mechanics of Materials, pp. 96-108, 2016. DOI: https://doi.org/10.1016/j.mechmat.2015.10.012
[4]. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. "Metal foams: A design guide".U.S.A: Planta Tree, 2000. DOI:
https://doi.org/10.1115/1.1421119
[5]. Fernández, P., Cruz, L. J., & Coleto, J. "Procesos de fabricación de metales celulares. Parte I: Procesos por vía líquida". Revista de metalúrgia, pp. 540-556, 2008. DOI: https://doi.org/10.3989/revmetalm.0767
[6]. Banhart, J. "Manufacture, characterisation and application of celular metals and metals foams". Progress in Materials Science, pp. 559-632, 2001. DOI:
https://doi.org/10.1016/S0079-6425(00)00002-5
[7]. Baumeister, J.; Banhart, J.; Weber, J. "Aluminium foams for transport industry". Materials & Design,Vol. 18, Nos. 4r6, pp. 217]220, 1997. DOI: https://doi.org/10.1016/S0261-3069(97)00050-2
[8]. Irausquín Castro, I. A. "Caracterización mecánica de espumas metálicas y su aplicación en sistemas de absorción de energía". Tésis doctoral. Madrid, 2012.
[9]. Fernández, P., Cruz, L., & Coleto, J. "Procesos de fabricación de metales celulares. Parte II. Vía sólida, deposición de metales, otros procesos". Revista de Metalúrgia, pp. 124-142, 2009. DOI: https://doi.org/10.3989/revmetalm.0806
[10]. Jiang, B., Wang, Z., & Zhao, N. "Effect of pore size and relative density on the mechanical properties of open cell aluminum foams". Scripta materialia, pp. 169-172, 2007. DOI: https://doi.org/10.1016/j.scriptamat.2006.08.070
[11]. Gaillard, C., Despois, J., & Mortensen, A. "Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams". Materials Science and Engineering, p.p 250-262, 2004. DOI: https://doi.org/10.1016/j.msea.2004.03.015
[12]. Báez P, S., Hernández R, M., & Palomar P., M. "Processing and characterization of open-cell aluminum foams obtained through infiltration processes". Procedia Materials Science, pp. 54-61, 2014. DOI: https://doi.org/10.1016/j.mspro.2015.04.007
[13]. San Marchi, C., & Mortensen, A. "Deformation of open-cell aluminum foam". Acta Materialia, pp. 3959-3969, 2001. DOI: https://doi.org/10.1016/S1359-6454(01)00294-4
[14]. Goodall, R., Marmottant, A., Salvo, L., & Mortensen, A. "Spherical pore replicated microcellular aluminium: Processing and influence on properties". Materials Science and Engineering, pp. 124-135, 2007. DOI:
https://doi.org/10.1016/j.msea.2007.02.002
[15]. Nemecek, J., Kralik, V., & Vondrejc, J. "A two-scale micromechanical model for aluminium foam based on results from nanoindentation". Computers and Structures, pp. 136-145, 2013. DOI: https://doi.org/10.1016/j.compstruc.2013.07.007
[16]. Gibson, L. J. "Mechanical behavior of metallic foams". Annual Reviews Materials Science, pp. 191-227, 2000. DOI: https://doi.org/10.1146/annurev.matsci.30.1.191
[17]. Hasan Bafti and Ali Habibolahzadeh. "Compressive properties of aluminum foam produced by powder-Carbamide spacer route" Materials & Design,Vol. 52, pp. 404-411, 2013. DOI: https://doi.org/10.1016/j.matdes.2013.05.043
[18]. Bhasker, S., Somnath B. "Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method" Materials Characterization 130. Pp. 198-203, 2017. DOI: https://doi.org/10.1016/j.matchar.2017.06.008
[19]. Linul, E.,Marsavina, L., Kovacick, J.,Sadowsky, T. "Dynamic and quasi-static compression test of closed-cell aluminium alloy foams". Proceedings of the Romanian Academy-Seria A, pp. 361-369, 2017.
[20]. Baez Pimiento, S., Hernández Rojas, M., & Palomar Pardavé, M. México Patente Nº Request patent 2013014443, 2013. DOI: https://doi.org/10.1016/j.mspro.2015.04.007
[21]. R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich. "Influence of processing parameters on aluminium foam produced by space holder technique". Materials and Design 30, pp. 1878-1885, 2009. DOI: https://doi.org/10.1016/j.matdes.2008.09.027
[22]. Bhasker, S., Somnath B. "Development of Al foams by a low-cost salt replication method for industrial applications". Materials Today: Proceedings 2, pp. 1886 - 1891, 2015. DOI: https://doi.org/10.1016/j.matpr.2015.07.140
Downloads
-
Vistas(Views): 293
- PDF (Español (España)) Descargas(Downloads): 223
- HTML (Español (España)) Descargas(Downloads): 10
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Scientia et Technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.