Synthesis and characterization of cellular Aluminum-Silicon metals with Open-Pore


Authors

DOI:

https://doi.org/10.22517/23447214.24775

Keywords:

Cellular metals, compressive testing, energy absorption, infiltration of removable fillers, interconnected pore, mechanical properties

Abstract

This work shows the experimental results obtained from the manufacture and characterization of cellular metals with open or interconnected pore. As a base metal we use an aluminum-silicon alloy for casting and for manufacturing we use the modified removable filler infiltration technique.  As a filler material, high purity sea salt with three particle size ranges was used. The samples obtained were characterized in terms of their morphology and pore topology using Scanning Electron Microscopy. Using simple mathematical models, structural characteristics such as density, relative density and percentage of porosity were determined. Based on quasi-static compression tests, stress-strain curves were constructed and mechanical properties such as stiffness, plateau stress, densification deformation and mechanical energy absorption capacity of these materials were obtained. The results show that increasing the pore size increases density, relative density and decreases porosity and energy absorption capacity.

Downloads

Download data is not yet available.

Author Biographies

Luis Edgar Moreno-Montoya, Universidad Nacional de Colombia Sede Manizales

Ingeniero Industrial y Magister en Ciencias: Física. Títulos obtenidos en la Universidad Nacional de Colombia Sede Manizales. Actualmente realiza estudios de Doctorado en la misma Universidad. Es docente del Departamento de Ingeniería Industrial y su área de desempeño a nivel docente y de investigación es la Ciencia e Ingeniería de

Sandro Baéz-Pimiento, Universidad Nacional de Colombia

Ingeniero Metalúrgico de la Universidad Industrial de Santander, UIS. Realizó estudios de Maestría y Doctorado en Ciencia e Ingeniería de Materiales en la Universidad Nacional Autónoma de México, UNAM. Su experiencia profesional incluye la realización de estancias posdoctorales en la UNAM y la Universidad Autónoma Metropolitana de México, UAM, así como actividades de docencia e investigación en la Universidad Nacional de Colombia, UN. Sus áreas de interés incluyen la fabricación de metales porosos y aleaciones amorfas.

Jhoan Mauricio Moreno-Vargas, Universidad Nacional de Colombia

Ingeniero Físico y Magíster en Ciencias: Física. Títulos obtenidos en la Universidad Nacional de Colombia Sede Manizales. Actualmente realiza estudios de doctorado en Ciencias: Física. Se desempeña como docente ocasional en la Universidad Nacional Sede Manizales en las áreas de física e ingeniería de materiales.  Su área de interés es la síntesis y caracterización de materiales para ingeniería. 

References

[1]. Gutiérrez Vásquez, J. A., & Oñoro, J. "Espumas de aluminio: fabricación, propiedades y aplicaciones". Revista de metalúrgia, pp. 457-476, 2008. DOI: https://doi.org/10.3989/revmetalm.0751

[2]. Gibson LJ, Ashby MF. "Cellular Solids: Structure and Properties." Cambridge, UK: Cambridge Univ. Press, 2nd ed, 1997. DOI: https://doi.org/10.1017/CBO9781139878326

[3]. Vesenjak, M., Sulong, M. A., Krstulovik-Opara, L., Borovinsek, M., Mathier, V., & Fiedler, T. "Dynamic compression of aluminium foam derived from infiltration casting of salt dough". Mechanics of Materials, pp. 96-108, 2016. DOI: https://doi.org/10.1016/j.mechmat.2015.10.012

[4]. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. "Metal foams: A design guide".U.S.A: Planta Tree, 2000. DOI:

https://doi.org/10.1115/1.1421119

[5]. Fernández, P., Cruz, L. J., & Coleto, J. "Procesos de fabricación de metales celulares. Parte I: Procesos por vía líquida". Revista de metalúrgia, pp. 540-556, 2008. DOI: https://doi.org/10.3989/revmetalm.0767

[6]. Banhart, J. "Manufacture, characterisation and application of celular metals and metals foams". Progress in Materials Science, pp. 559-632, 2001. DOI:

https://doi.org/10.1016/S0079-6425(00)00002-5

[7]. Baumeister, J.; Banhart, J.; Weber, J. "Aluminium foams for transport industry". Materials & Design,Vol. 18, Nos. 4r6, pp. 217]220, 1997. DOI: https://doi.org/10.1016/S0261-3069(97)00050-2

[8]. Irausquín Castro, I. A. "Caracterización mecánica de espumas metálicas y su aplicación en sistemas de absorción de energía". Tésis doctoral. Madrid, 2012.

[9]. Fernández, P., Cruz, L., & Coleto, J. "Procesos de fabricación de metales celulares. Parte II. Vía sólida, deposición de metales, otros procesos". Revista de Metalúrgia, pp. 124-142, 2009. DOI: https://doi.org/10.3989/revmetalm.0806

[10]. Jiang, B., Wang, Z., & Zhao, N. "Effect of pore size and relative density on the mechanical properties of open cell aluminum foams". Scripta materialia, pp. 169-172, 2007. DOI: https://doi.org/10.1016/j.scriptamat.2006.08.070

[11]. Gaillard, C., Despois, J., & Mortensen, A. "Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams". Materials Science and Engineering, p.p 250-262, 2004. DOI: https://doi.org/10.1016/j.msea.2004.03.015

[12]. Báez P, S., Hernández R, M., & Palomar P., M. "Processing and characterization of open-cell aluminum foams obtained through infiltration processes". Procedia Materials Science, pp. 54-61, 2014. DOI: https://doi.org/10.1016/j.mspro.2015.04.007

[13]. San Marchi, C., & Mortensen, A. "Deformation of open-cell aluminum foam". Acta Materialia, pp. 3959-3969, 2001. DOI: https://doi.org/10.1016/S1359-6454(01)00294-4

[14]. Goodall, R., Marmottant, A., Salvo, L., & Mortensen, A. "Spherical pore replicated microcellular aluminium: Processing and influence on properties". Materials Science and Engineering, pp. 124-135, 2007. DOI:

https://doi.org/10.1016/j.msea.2007.02.002

[15]. Nemecek, J., Kralik, V., & Vondrejc, J. "A two-scale micromechanical model for aluminium foam based on results from nanoindentation". Computers and Structures, pp. 136-145, 2013. DOI: https://doi.org/10.1016/j.compstruc.2013.07.007

[16]. Gibson, L. J. "Mechanical behavior of metallic foams". Annual Reviews Materials Science, pp. 191-227, 2000. DOI: https://doi.org/10.1146/annurev.matsci.30.1.191

[17]. Hasan Bafti and Ali Habibolahzadeh. "Compressive properties of aluminum foam produced by powder-Carbamide spacer route" Materials & Design,Vol. 52, pp. 404-411, 2013. DOI: https://doi.org/10.1016/j.matdes.2013.05.043

[18]. Bhasker, S., Somnath B. "Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method" Materials Characterization 130. Pp. 198-203, 2017. DOI: https://doi.org/10.1016/j.matchar.2017.06.008

[19]. Linul, E.,Marsavina, L., Kovacick, J.,Sadowsky, T. "Dynamic and quasi-static compression test of closed-cell aluminium alloy foams". Proceedings of the Romanian Academy-Seria A, pp. 361-369, 2017.

[20]. Baez Pimiento, S., Hernández Rojas, M., & Palomar Pardavé, M. México Patente Nº Request patent 2013014443, 2013. DOI: https://doi.org/10.1016/j.mspro.2015.04.007

[21]. R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich. "Influence of processing parameters on aluminium foam produced by space holder technique". Materials and Design 30, pp. 1878-1885, 2009. DOI: https://doi.org/10.1016/j.matdes.2008.09.027

[22]. Bhasker, S., Somnath B. "Development of Al foams by a low-cost salt replication method for industrial applications". Materials Today: Proceedings 2, pp. 1886 - 1891, 2015. DOI: https://doi.org/10.1016/j.matpr.2015.07.140

Downloads

Published

2022-12-29

How to Cite

Moreno-Montoya, L. E., Baéz-Pimiento, S., & Moreno-Vargas, J. M. (2022). Synthesis and characterization of cellular Aluminum-Silicon metals with Open-Pore. Scientia Et Technica, 27(4), 215–222. https://doi.org/10.22517/23447214.24775