Design and construction of a solar tracking system for parabolic-trough collector prototype
Diseño y Construcción de un Sistema de Seguimiento Solar para un Prototipo de Colector Cilindro-Parabólico
DOI:
https://doi.org/10.22517/23447214.24792Keywords:
Control Algorithm, Control Systems, Parabolic-Trough Collector, Solar Collector, Solar Concentration.Abstract
The search for technological alternatives to satisfy diverse global needs has triggered an arduous process of research and technological developments worldwide for the use of renewable resources. For their part, linear parabolic trough collectors have proven to be an alternative for the water heating process and for the production of electric energy. For its part, the research group in energy systems, automation and control (GISEAC) of the Technological Units of Santander, developed a prototype parabolic trough collector with low-cost materials available in the region (Bucaramanga, Colombia). Consequently, in order to improve the performance of the device, this paper presents the sizing, implementation and testing of a single-axis solar trajectory tracking system in a small-scale parabolic trough collector, applying a closed-loop control system. The control system is governed by a system integrated by an ESP32 module and a Raspberry PI3 microcontroller. The axis of the device is coupled to a mechanism composed of a gear and chain transmission system, directly coupled to an electric motor. The positioning of the collector angle is determined by a sensor that directly measures the amount of LUX and identifies by means of the developed algorithm, the location with the highest levels of direct incident solar radiation. In this way, the system can track the solar position throughout the course of the solar day. Finally, it should be noted that the maximum percentage of deviation of the solar tracking system is less than 1%. At the same time, the performance of the implemented solar trajectory tracking system “Automatic solar tracking system” increased by more than 40% with respect to the initial tracking system “Manual solar tracking system”.
Downloads
References
[2] B. G. Miller, “14 - Emerging Technologies for Reduced Carbon Footprint”, en Clean Coal Engineering Technology (Second Edition), B. G. Miller, Ed. Butterworth-Heinemann, 2017, pp. 669–689. doi: 10.1016/B978-0-12-811365-3.00014-4.
[3] A. Z. Hafez et al., “Design analysis of solar parabolic trough thermal collectors”, Renewable and Sustainable Energy Reviews, vol. 82, pp. 1215–1260, feb. 2018, doi: 10.1016/j.rser.2017.09.010.
[4] Y. Tripanagnostopoulos, “3.08 - Photovoltaic/Thermal Solar Collectors”, en Comprehensive Renewable Energy, A. Sayigh, Ed. Oxford: Elsevier, 2012, pp. 255–300. doi: 10.1016/B978-0-08-087872-0.00308-5.
[5] A. Herez, H. El Hage, T. Lemenand, M. Ramadan, y M. Khaled, “Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems”, Solar Energy, vol. 207, pp. 1321–1347, sep. 2020, doi: 10.1016/j.solener.2020.07.062.
[6] R. Kumar y M. A. Rosen, “A critical review of photovoltaic–thermal solar collectors for air heating”, Applied Energy, vol. 88, núm. 11, pp. 3603–3614, nov. 2011, doi: 10.1016/j.apenergy.2011.04.044.
[7] K. Lovegrove y J. Pye, “Chapter 2 - Fundamental principles of concentrating solar power systems”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 19–71. doi: 10.1016/B978-0-12-819970-1.00013-X.
[8] K. Lovegrove y W. Stein, “Chapter 1 - Introduction to concentrating solar power technology”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 3–17. doi: 10.1016/B978-0-12-819970-1.00012-8.
[9] B. E. Tarazona-Romero, Á. Campos-Celador, Y. A. Muñoz-Maldonado, C. L. Sandoval-Rodríguez, y J. G. Ascanio-Villabona, “Prototype of lineal solar collector Fresnel: Artisanal system for the production of hot water and/or water vapor”, Vis. Electron., vol. 14, núm. 1, Art. núm. 1, ene. 2020, doi: 10.14483/22484728.16013.
[10] B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D. Rincón-Quintero, “Development of a Fresnel Artisanal System for the Production of Hot Water or Steam”, en Recent Advances in Electrical Engineering, Electronics and Energy, Cham, 2021, pp. 196–209. doi: 10.1007/978-3-030-72212-8_15.
[11] W.-D. Steinmann, “Chapter 11 - Thermal energy storage systems for concentrating solar power plants”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 399–440. doi: 10.1016/B978-0-12-819970-1.00008-6.
[12] H. Price et al., “Chapter 20 - Concentrating solar power best practices”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725–757. doi: 10.1016/B978-0-12-819970-1.00020-7.
[13] P. V. Gharat, S. S. Bhalekar, V. H. Dalvi, S. V. Panse, S. P. Deshmukh, y J. B. Joshi, “Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review”, Renewable and Sustainable Energy Reviews, vol. 145, p. 111002, jul. 2021, doi: 10.1016/j.rser.2021.111002.
[14] E. Z. Moya, “7 - Parabolic-trough concentrating solar power (CSP) systems”, en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 197–239
. doi: 10.1533/9780857096173.2.197.
[15] E. Z. Moya, “Chapter 7 - Parabolic-trough concentrating solar power systems”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 219–266. doi: 10.1016/B978-0-12-819970-1.00009-8.
[16] E. Zarza-Moya, “7 - Concentrating Solar Thermal Power”, en A Comprehensive Guide to Solar Energy Systems, T. M. Letcher y V. M. Fthenakis, Eds. Academic Press, 2018, pp. 127–148. doi: 10.1016/B978-0-12-811479-7.00007-5.
[17] G. Barone, A. Buonomano, C. Forzano, y A. Palombo, “Chapter 6 - Solar thermal collectors”, en Solar Hydrogen Production, F. Calise, M. D. D’Accadia, M. Santarelli, A. Lanzini, y D. Ferrero, Eds. Academic Press, 2019, pp. 151–178. doi: 10.1016/B978-0-12-814853-2.00006-0.
[18] C. B. Anfinsen, “Solar Energy”, Science, vol. 192, núm. 4236, pp. 202–202, abr. 1976, doi: 10.1126/science.192.4236.202.
[19] M. U. H. Joardder, P. K. Halder, M. A. Rahim, y M. H. Masud, “Chapter Eight - Solar Pyrolysis: Converting Waste into Asset Using Solar Energy”, en Clean Energy for Sustainable Development, M. G. Rasul, A. kalam Azad, y S. C. Sharma, Eds. Academic Press, 2017, pp. 213–235. doi: 10.1016/B978-0-12-805423-9.00008-9.
[20] M. Malekan, A. Khosravi, y M. El Haj Assad, “Chapter 6 - Parabolic trough solar collectors”, en Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds. Academic Press, 2021, pp. 85–100. doi: 10.1016/B978-0-12-821602-6.00007-9.
[21] J. Fredriksson, M. Eickhoff, L. Giese, y M. Herzog, “A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application”, Solar Energy, vol. 215, pp. 266–310, feb. 2021, doi: 10.1016/j.solener.2020.12.017.
[22] S. Toghyani, E. Baniasadi, y E. Afshari, “Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector”, Energy Conversion and Management, vol. 121, pp. 93–104, ago. 2016, doi: 10.1016/j.enconman.2016.05.029.
[23] R. Silva, M. Pérez, M. Berenguel, L. Valenzuela, y E. Zarza, “Uncertainty and global sensitivity analysis in the design of parabolic-through direct steam generation plants for process heat applications”, Applied Energy, vol. 121, pp. 233–244, may 2014, doi: 10.1016/j.apenergy.2014.01.095.
[24] R. V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, y A. G. Quiroga, “Exergy analysis of parabolic trough solar receiver”, Applied Thermal Engineering, vol. 67, núm. 1, pp. 579–586, jun. 2014, doi: 10.1016/j.applthermaleng.2014.03.053.
[25] S. Peng, H. Hong, H. Jin, y Z. Zhang, “A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants”, Solar Energy, vol. 98, pp. 492–502, dic. 2013, doi: 10.1016/j.solener.2013.09.039.
[26] Natraj, B. N. Rao, y K. S. Reddy, “Wind load and structural analysis for standalone solar parabolic trough collector”, Renewable Energy, vol. 173, pp. 688–703, ago. 2021, doi: 10.1016/j.renene.2021.04.007.
[27] S. A. Kalogirou, “A detailed thermal model of a parabolic trough collector receiver”, Energy, vol. 48, núm. 1, pp. 298–306, dic. 2012, doi: 10.1016/j.energy.2012.06.023.
[28] F. I. Nascimento, E. W. Zavaleta-Aguilar, y J. R. Simões-Moreira, “Algorithm for sizing parabolic-trough solar collectors”, Thermal Science and Engineering Progress, p. 100932, abr. 2021, doi: 10.1016/j.tsep.2021.100932.
[29] W. Qu, R. Wang, H. Hong, J. Sun, y H. Jin, “Test of a solar parabolic trough collector with rotatable axis tracking”, Applied Energy, vol. 207, pp. 7–17, dic. 2017, doi: 10.1016/j.apenergy.2017.05.114.
[30] Y. Yao, Y. Hu, S. Gao, G. Yang, y J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy, vol. 72, pp. 88–98, dic. 2014, doi: 10.1016/j.renene.2014.07.002.
[31] G. C. Bakos, “Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement”, Renewable Energy, vol. 31, núm. 15, pp. 2411–2421, dic. 2006, doi: 10.1016/j.renene.2005.11.008.
[32] M. S. Al-Soud, E. Abdallah, A. Akayleh, S. Abdallah, y E. S. Hrayshat, “A parabolic solar cooker with automatic two axes sun tracking system”, Applied Energy, vol. 87, núm. 2, pp. 463–470, feb. 2010, doi: 10.1016/j.apenergy.2009.08.035.
[33] W. Schiel y T. Keck, “Chapter 9 - Parabolic dish concentrating solar power systems”, en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 311–355. doi: 10.1016/B978-0-12-819970-1.00007-4.
[34] C. Chang, “5 - Tracking solar collection technologies for solar heating and cooling systems”, en Advances in Solar Heating and Cooling, R. Z. Wang y T. S. Ge, Eds. Woodhead Publishing, 2016, pp. 81–93. doi: 10.1016/B978-0-08-100301-5.00005-9.
[35] D. Sakthivadivel, K. Balaji, D. Dsilva Winfred Rufuss, S. Iniyan, y L. Suganthi, “Chapter 1 - Solar energy technologies: principles and applications”, en Renewable-Energy-Driven Future, J. Ren, Ed. Academic Press, 2021, pp. 3–42. doi: 10.1016/B978-0-12-820539-6.00001-7.
Downloads
-
Vistas(Views): 500
- PDF (Español (España)) Descargas(Downloads): 168
Published
Versions
- 2023-03-31 (3)
- 2023-06-13 (2)
- 2023-03-31 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia et Technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.