Metodología multicriterio basada en ciencia de datos para la selección del modelo óptimo de pronóstico del consumo de energía eléctrica residencial


Authors

DOI:

https://doi.org/10.22517/23447214.25335

Keywords:

AHP, data science, machine learning, pairwise comparisons, regression, TOPSIS

Abstract

There is a wide variety of techniques and models for forecasting electrical energy consumption, depending on both the type of user, the forecast horizon, and the resolution of the available data. Likewise, there are different metrics to evaluate the performance of these models. So, in this research an integrated multi-criteria methodology is proposed to select the best forecast model for residential electricity consumption, using the Analytical Hierarchical Process (AHP) to establish the weights of relative importance of the decision criteria, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to make the selection of the optimal model. The methodology is in turn framed within a data science process, through which the data is extracted, processed, and analyzed, prior to the application of the machine learning algorithms to obtain the forecast models, which will correspond to decision alternatives. The performance metrics in the evaluation phase of the models, and the performance metrics obtained from the forecast phase, are considered as the decision criteria. From the pairwise comparisons technique, it was obtained that the mean absolute percentage error (MAPE) of the prognosis phase was the criterion with the greatest weight of importance, followed by the coefficient of determination R2 and the MAPE of the evaluation phase. From the TOPSIS method, the Multiple Linear Regression model was selected as the optimal forecast model.

 

Downloads

Download data is not yet available.

Author Biography

César Aristóteles, Universidad Central de Venezuela, Ministerio del Poder Popular para la Energía Eléctrica

Ingeniero Electricista, Especialista en Sistemas de Potencia, Magister Scientiarum en Investigación de Operaciones. Docente de Postgrado UCV. Planificador en MPPEE.

References

L. L. Grigsby, Power Systems, Boca Raton, FL: CRC Press, 2007.

V. Gupta y S. Pal, «An Overview of Different Types of Load Forecasting Methods and the Factors Affecting the Load Forecasting,» International Journal for Research in Applied Science & Engineering Technology, pp. 729-733. http://doi.org/10.22214/ijraset.2017.4132, 2017.

Y. Badulescu, A.-P. Hameri y N. Cheikhrouhou, «Evaluating demand forecasting models using multi-criteria decision-making approach,» Journal of Advances in Management Research, pp. DOI 10.1108/JAMR-05-2020-0080., 2021.

C. Deina, J. L. Ferreira dos Santos, L. H. Biuk, M. Lizot, A. Converti, H. Valadares Siqueira y F. Trojan, «Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis,» Energies, p. https://doi.org/10.3390/en16041712, 2023.

J. V. Jales Melo, G. R. Soares Lira, E. G. Costa, A. F. Leite Neto y I. B. Oliveira, «Short-Term Load Forecasting on Individual Consumers,» Energies, p. https://doi.org/10.3390/en15165856, 2022.

S. Filipova-Petrakieva y V. Dochev, «Short-Term Forecasting of Hourly Electricity Power Demand,» Engineering, Technology & Applied Science Research - Reggresion and Cluster Methods for Short-Term Prognosis, vol. 12, nº 2, pp. 8374-8381, 2022.

G. P. Papaioannou, C. Dikaiakos, A. Dramountanis y P. G. Papaioannou, «Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing) and Artificial Intelligence Models (ANN, SVM): Th,» MDPI energies, vol. 9, nº 8, 2016.

S. R. Khan, I. A. Hayder, S. u. Rehman Khan, M. A. Habib, M. Ahmad, S. M. Mohsin, F. A. Khan y K. Mustafa, «Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids,» Energies, p. https://doi.org/10.3390/en16010276, 2022.

P. Pełka, «Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods,» Energies, p. https://doi.org/10.3390/en16020827, 2023.

M. A. Hammad, B. Jereb, B. Rosi y D. Dragan, «Methods and Models for Electric Load Forecasting: A Comprehensive Review,» Logistics, Supply Chain, Sustainability and Global Challenges, vol. 11, nº 1, pp. 51-76. doi: 10.2478/jlst-2020-0004., 2020.

F. Eltarabishi, O. H. Omar, I. Alsyouf y M. Bettayeb, «Multi-Criteria Decision Making Methods And Their Applications– A Literature Review,» de Proceedings of the International Conference on Industrial Engineering and Operations Management, Dubai, UAE, 2020.

J. VanderPlas, Python Data Science Handbook - Essential Tools for Working with Data, Sebastopol, CA: O’Reilly Media, Inc., 2017.

D. Cielen, A. D. B. Meysman y M. Ali, Introducing Data Science, Shelter Island, NY: Manning Publications Co., 2016.

Comisión Nacional de Energía de Chile, «Energía Abierta,» 01 Abril 2023. [En línea]. Available: http://energiaabierta.cl/categorias-estadistica/electricidad/?sf_paged=2. [Último acceso: 16 July 2022].

C. Yajure Ramírez, «Uso de algoritmos de aprendizaje automático para analizar datos de energía eléctrica facturada. Caso: Chile 2015 – 2021,» Revista I+D Tecnológico, pp. 17-31. https://doi.org/10.33412/idt.v18.2.3678, 2022.

Dirección General de Aeronáutica Civil de Chile, «DGAC CHILE,» 01 04 2023. [En línea]. Available: https://climatologia.meteochile.gob.cl/application/informacion/fichaDeEstacion/330020. [Último acceso: 01 12 2022].

Instituto Nacional de Estadísticas de Chile, «INE,» 01 04 2023. [En línea]. Available: https://www.ine.gob.cl/estadisticas/economia/indices-de-precio-e-inflacion/indice-de-precios-al-consumidor. [Último acceso: 01 12 2022].

A. Navlani, A. Fandango y I. Idris, Python Data Analysis, Birmingham, UK: Packt Publishing Ltd., 2021.

B. Ratner, Statistical and Machine-Learning Data Mining - Techniques for Better Predictive Modeling and Analysis of Big Data, Boca Raton, FL: CRC Press Taylor & Francis Group, 2017.

D. N. Gujarati y D. C. Porter, Econometría, México, D. F.: McGraw-Hill/Interamericana Editores, S.A. DE C.V., 2010.

S. Makridakis, S. Wheelwright y R. Hyndman, Manual of Forecasting: Methods and Applications, 1997.

A. Kapoor, A. Gulli y S. Pal, Deep Learning with TensorFlow and Keras, Birmingham: Packt Publishing Ltd., 2022.

J. Moolayil, Learn Keras for Deep Neural Networks - A Fast-Track Approach to Modern Deep Learning with Python, Vancouver, BC, Canada: Apress, 2019.

F. Chollet, Deep Learning with Python, Shelter Island, NY: Manning Publications Co., 2018.

J. Brownlee, Deep Learning With Python - Develop Deep Learning Models On Theano And TensorFlow Using Keras, Melbourne, Australia: Machine Learning Mastery, 2016.

J. Arnastauskaite, T. Ruzgas y M. Braženas, «An Exhaustive Power Comparison of Normality Tests,» Mathematics, p. https://doi.org/10.3390/math9070788, 2021.

M. E. Fenner, Machine Learning with Python for Everyone, Boston: Pearson Education, Inc., 2020.

B. K. Gacar y İ. D. Kocakoç, «Regression Analyses or Decision Trees?,» Manisa Celal Bayar University Journal of Social Sciences, pp. 251-260. Doi: 10.18026/cbayarsos.796172., 2020.

R. Muthukrishnan y M. Jamila. S, «Predictive Modeling Using Support Vector Regression,» International Journal of Scientific & Technology Research, pp. 4863-4865., 2020.

A. Ishizaka y P. Nemery, Multi-Criteria Decision Analysis - Methods and Software, West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2013.

M. Velasquez y P. T. Hester, «An Analysis of Multi-Criteria Decision Making Methods,» International Journal of Operations Research, pp. 56-66. http://www.orstw.org.tw/ijor/vol10no2/ijor_vol10_no2_p56_p66.pdf, 2013.

E. Triantaphyllou, B. Shu, S. Nieto Sanchez y T. Ray, «Multi-Criteria Decision Making: An Operations Research Approach,» Encyclopedia of Electrical and Electronics Engineering, pp. 175-186., 1998.

T. L. Saaty, «Decision making with the analytic hierarchy process,» International Journal of Services Sciences, pp. 83-98. https://dx.doi.org/10.1504/IJSSCI.2008.017590, 2008.

J. M. Moreno Jiménez, «El proceso analítico jerárquico (AHP). Fundamentos, metodología, y aplicaciones.,» Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, pp. 28-77, 2002.

B. Sahoo, R. N. Behera y P. K. Pattnaik, «A Comparative Analysis of Multi-Criteria Decision Making Techniques for Ranking of Attributes for e-Governance in India,» International Journal of Advanced Computer Science and Applications, pp. 65-70. https://dx.doi.org/10.14569/IJACSA.2022.0130311, 2022.

J. Papathanasiou y N. Ploskas, Multiple Criteria Decision Aid - Methods, Examples and Python Implementations, Cham, Switzerland: Springer Nature Switzerland AG, 2018.

Downloads

Published

2023-09-20

How to Cite

César Aristóteles. (2023). Metodología multicriterio basada en ciencia de datos para la selección del modelo óptimo de pronóstico del consumo de energía eléctrica residencial. Scientia Et Technica, 28(03), 108–116. https://doi.org/10.22517/23447214.25335