Reconocimiento de expresiones faciales utilizando análisis de componentes principales kernel (kpca)
Abstract
Este artículo presenta una metodología para el reconocimiento de expresiones faciales con análisis de componentes principales kernel, la base de datos utilizada es la Carnegie Mellon University como herramienta de prueba. El método utiliza una función kernel que mapea los datos del espacio característico original a uno de mayor dimensionalidad, de esta forma un problema de origen no lineal se traslada a uno lineal y puede resolverse linealmente, además los métodos basados en kernel pueden reducir el número de parámetros usados para la clasificación, este método es comparado con el análisis de componentes principales y es puesto a discusión donde los porcentajes de acierto encontrados con la base de datos son mayor al 90%.Downloads
Downloads
-
Vistas(Views): 407
- PDF (Español (España)) Descargas(Downloads): 372
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Scientia et technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.