Selección del modelo por criterios de información para análisis de componentes principales ocultas de markov
Abstract
El modelo de análisis de componentes principales ocultas de Markov tiene en cuenta la dependencia entre observaciones multivariadas, que en el análisis tradicional de componentes principales se omite por completo. Para la aplicación de este modelo dinámico, es necesario conocer la dimensión de los subespacios principales asociados a cada estado de una cadena de Markov y el número de estados en la cadena. En este artículo, se emplean criterios de información para seleccionar los parámetros del modelo y se presenta una estrategia secuencial de selección de parámetros que reduce el costo computacional. Se muestran resultados utilizando bases de datos sintéticasDownloads
Downloads
-
Vistas(Views): 249
- PDF (Español (España)) Descargas(Downloads): 240
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Scientia et technica
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights
The journal is free open access. The papers are published under the Creative Commons Attribution / Attribution-NonCommercial-NoDerivatives 4.0 International - CC BY-NC-ND 4.0 license. For this reason, the author or authors of a manuscript accepted for publication will yield all the economic rights to the Universidad Tecnológica of Pereira free of charge, taking into account the following:
In the event that the submitted manuscript is accepted for publication, the authors must grant permission to the journal, in unlimited time, to reproduce, to edit, distribute, exhibit and publish anywhere, either by means printed, electronic, databases, repositories, optical discs, Internet or any other required medium. In all cases, the journal preserves the obligation to respect, the moral rights of the authors, contained in article 30 of Law 23 of 1982 of the Government Colombian.
The transferors using ASSIGNMENT OF PATRIMONIAL RIGHTS letter declare that all the material that is part of the article is entirely free of copyright. Therefore, the authors are responsible for any litigation or related claim to intellectual property rights. They exonerate of all responsibility to the Universidad Tecnológica of Pereira (publishing entity) and the Scientia et Technica journal. Likewise, the authors accept that the work presented will be distributed in free open access, safeguarding copyright under the Creative Commons Attribution / Recognition-NonCommercial-NoDerivatives 4.0 International - https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es license.