El ensayo no destructivo usando termografía infrarroja en el mundo y en América Latina: Una revisión
DOI:
https://doi.org/10.22517/23447214.24717Palabras clave:
ensayo no destructivo, materiales compuestos, revisión de literatura, termografía infrarrojaResumen
En este artículo se sintetiza una revisión de los principales trabajos relacionados con ensayo no destructivo usando termografía infrarroja incluyendo aportes realizados por investigadores de América Latina. Se encontró en este campo una tendencia creciente de la producción académica en los últimos años, lo cual ratifica que es un área de interés y desarrollo continuo. El resultado de la revisión se clasificó en cuatro líneas temáticas cubriendo principalmente: i) trabajos que recopilan el estado del arte, ii) desarrollos en técnicas de procesamiento de información térmica, iii) indicadores de desempeño y iv) simulación, modelos térmicos y campos de aplicación. Adicionalmente, se registraron los países tradicionales y emergentes que están generando contribuciones en el sector del ensayo no destructivo usando termografía infrarroja. Finalmente, se identificó cómo el enfoque actual del procesamiento de información térmica está orientado al procesamiento de secuencias de imágenes, donde el número de técnicas es cada vez mayor y se evidenció una reducida cantidad de métricas para la evaluación objetiva de su rendimiento
Descargas
Citas
[1]X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing. New York: John Wiley-Interscience, 2001.
[2]D. Balageas et al., "Thermal (IR) and Other NDT Techniques for Improved Material Inspection," J. Nondestruct. Eval., vol. 35, no. 1, pp. 1-17, 2016, doi: https://doi.org/10.1007/s10921-015-0331-7
[3] C. Ibarra, "Quantitative subsurface defect evaluation by pulsed phase thermography: depth retrieval with the phase," Laval University, 2005.
[4] V. P. Vavilov, "Thermal non destructive testing: short history and state-of-art," in QIRT 92 - Eurotherm Series 27, 1992, pp. 179-194, doi: http://dx.doi.org/10.21611/qirt.1992.028.
[5] D. L. Balageas, J. C. Krapez, and P. Cielo, "Pulsed photothermal modeling of layered materials," J. Appl. Phys., vol. 59, no. 2, pp. 348-357, Jan. 1986, doi: https://doi.org/10.1063/1.336690
[6] V. P. Vavilov and R. Taylor, "Theoretical and practical aspects of the thermal NDT of bonded structures," Res. Tech. NDT, vol. 5, no. N.A., pp. 239-280, 1982.
[7] P. V. MacLaughlin and H. G. Mirchandani, "Aerostructure NDT evaluation by thermal field detection (Phase II). Final Rep.," AIRTASK, Nav. Air Syst. Command AIR- 310G, vol. N.A., no. N.A., p. N.A, 1984.
[8] Y. A. Popov, K. A. E., V. A. Strokov, and E. Al., "Thermal NDT of multi-layer structures," Defectoscopiya (Russ. J. Nondestr. Test.), vol. 3, no. N. A., pp. 76-81, 1976.
[9] V. Vavilov, "Thermal Non-Destructive Testing: Short History, State-of-the-Art and Trends," Image Process., 1995.
[10] X. Maldague, J. C. Krapez, and D. Poussart, "Thermographic Nondestructive Evaluation (NDE): An Algorithm for Automatic Defect Extraction in Infrared Images," IEEE Trans. Syst. Man Cybern., vol. 20, no. 3, pp. 722-725, 1990, doi: https://doi.org/10.1109/21.57287
[11] X. Maldague and S. Marinetti, "Pulse phase infrared thermography," J. Appl. Phys., vol. 79, no. 5, p. 2694, 1996, doi: https://doi.org/10.1063/1.362662
[12] X. Maldague, Y. Largouët, and J.-P. Couturier, "A study of defect depth using neural networks in pulsed phase thermography: modelling, noise, experiments," Rev. Générale Therm., vol. 37, pp. 704-717, 1998, doi: 10.1016/S0035-3159(98)80048-2.
https://doi.org/10.1016/S0035-3159(98)80048-2
D. Pan, Z. Jiang, W. Gui, K. Jiang, and X. Maldague, "Compensation Method for the Influence of Dust in Optical Path on Infrared Temperature Measurement," IEEE Trans. Instrum. Meas., vol. 70, pp. 1-11, 2021, doi: 10.1109/TIM.2020.3012015.
https://doi.org/10.1109/TIM.2020.3012015
D. Pan, Z. Jiang, X. Maldague, and W. Gui, "Research on the Influence of Multiple Interference Factors on Infrared Temperature Measurement," IEEE Sens. J., pp. 1-1, Jan. 2021, doi: 10.1109/jsen.2021.3055757.
https://doi.org/10.1109/JSEN.2021.3055757
J. Erazo-Aux, H. Loaiza-Correa, A. D. Restrepo-Giron, C. Ibarra-Castanedo, and X. Maldague, "Thermal imaging dataset from composite material academic samples inspected by pulsed thermography," Data Br., vol. 32, no. 106313, pp. 1-6, 2020, doi: 10.1016/j.dib.2020.106313.
https://doi.org/10.1016/j.dib.2020.106313
D. L. Balageas, "Termografía Infrarroja : una técnica multifacética para la Evaluación No Destructiva ( END )," IV Conf. Panam. END, no. January 2007, p. 14, 2007.
H. D. Benitez, "Contribución a la Caracterización de Defectos en Termografía Infrarroja mediante Máquinas de Aprendizaje," Universidad del Valle, 2008.
A. D. Restrepo-Girón, "Contribucion a la Solucion del Problema de Detección y Caracterizacion de Defectos en Termografia Activa mediante Procesamiento Espacio-Temporal de Secuencias de Imagenes Infrarrojas," 2013.
M. Z. Umar, V. Vladimir, H. Abdullah, and A. K. Ariffin, "Ultrasonic infrared thermography in non- destructive testing : A review," Russ. J. Nondestruct. Test., vol. 52, no. April, pp. 212-219, 2016, doi: 10.1134/S1061830916040082.
https://doi.org/10.1134/S1061830916040082
A. O. Chulkov and V. P. Vavilov, "Hardware and Software for Thermal Nondestructive Testing of Metallic and Composite Materials," J. Phys. Conf. Ser., vol. 671, no. January, p. 012011, 2016, doi: 10.1088/1742-6596/671/1/012011.
https://doi.org/10.1088/1742-6596/671/1/012011
V. P. Vavilov, A. O. Chulkov, D. A. Derusova, and Y. Pan, "Thermal NDT research at Tomsk Polytechnic University," Quant. Infrared Thermogr. J., no. January, pp. 1-16, 2016, doi: 10.1080/17686733.2015.1131855.
https://doi.org/10.1080/17686733.2015.1131855
F. Khodayar, S. Sojasi, and X. Maldague, "Infrared thermography and NDT: 2050 horizon," Quant. Infrared Thermogr. J., vol. 6733, no. July, pp. 1-22, 2016, doi: 10.1080/17686733.2016.1200265.
https://doi.org/10.1080/17686733.2016.1200265
V. P. Vavilov and D. D. Burleigh, "Review of pulsed thermal NDT: Physical principles, theory and data processing," NDT E Int., vol. 73, pp. 28-52, 2015, doi: 10.1016/j.ndteint.2015.03.003.
https://doi.org/10.1016/j.ndteint.2015.03.003
V. Vavilov, "Thermal NDT: historical milestones, state-of-the-art and trends," Quant. Infrared Thermogr. J., vol. 11, no. 1, pp. 66-83, 2014, doi: 10.1080/17686733.2014.897016.
https://doi.org/10.1080/17686733.2014.897016
D. L. Balageas, "A brief history of QIRT concept, structures and community," Quant. Infrared Thermogr. J., vol. 13, no. 1, pp. 109-125, 2016, doi: 10.1080/17686733.2015.1131852.
https://doi.org/10.1080/17686733.2015.1131852
S. Marinetti et al., "Statistical analysis of IR thermographic sequences by PCA," Infrared Phys. Technol., vol. 46, no. 1-2 SPEC. ISS., pp. 85-91, 2004, doi: 10.1016/j.infrared.2004.03.012.
https://doi.org/10.1016/j.infrared.2004.03.012
H. Benitez, H. Loaiza, B. Bacca, and J. Acevedo, "Sistema de Vision Artificial para el Procesamiento y Analisis de Imagenes Infrarrojas," XI Symp. Image, Signal Process. Artif. Vision, STSIVA [Disponible en CD].
R. E. Ospina, S. D. Cardona, and B. Bacca-Cortes, "Software tool for thermographic inspection using multimodal fusing of thermal and visible images," Ing. y Compet., vol. 19, no. 1, pp. 53-68, 2017, [Online]. Available: http://www.scielo.org.co/pdf/inco/v19n1/0123-3033-inco-19-01-00053.pdf.
S. M. Shepard, "Advances in pulsed thermography," in Thermosense XXIII, 2001, pp. 511-516, doi: 10.1117/12.421032.
https://doi.org/10.1117/12.421032
S. M. Shepard, "Flash Thermography of Aerospace Composites 2 . Thermographic Signal Reconstruction," in IV Conferencia Panamericana de END Buenos, 2007, vol. IV, no. Octubre, pp. 2-7, [Online]. Available: http://www.ndt.net/article/panndt2007/papers/132.pdf.
M. Pilla, M. Klein, X. Maldague, and A. Salerno, "New absolute contrast for pulsed Thermography," in 6th Conference on Quantitative Infrared Thermography, 2002, pp. 53-58.
https://doi.org/10.21611/qirt.2002.004
H. Benítez, X. Maldague, C. Ibarra-Castanedo, H. Loaiza, A. Bendada, and E. Caicedo, "Modified differential absolute contrast using thermal quadrupoles for the nondestructive testing of finite thickness specimens by infrared thermography," Can. Conf. Electr. Comput. Eng., no. May, pp. 1039-1042, 2007, doi: 10.1109/CCECE.2006.277741.
https://doi.org/10.1109/CCECE.2006.277741
F. J. Madruga, C. Ibarra-Castanedo, O. M. Conde, J. M. López-Higuera, and X. Maldague, "Infrared thermography processing based on higher-order statistics," NDT E Int., vol. 43, no. 8, pp. 661-666, 2010, doi: 10.1016/j.ndteint.2010.07.002.
https://doi.org/10.1016/j.ndteint.2010.07.002
A. D. Restrepo Girón and H. Loaiza Correa, "A new algorithm for detecting and correcting bad pixels in infrared images," Ing. E Investig., vol. 30, no. 2, pp. 197-207, 2010.
https://doi.org/10.15446/ing.investig.v30n2.15750
S. Marinetti and P. G. Cesaratto, "Emissivity estimation for accurate quantitative thermography," NDT E Int., vol. 51, pp. 127-134, 2012, doi: 10.1016/j.ndteint.2012.06.001.
https://doi.org/10.1016/j.ndteint.2012.06.001
T. J. Ramirez-Rozo, J. C. Garcia-Alvarez, and C. G. Castellanos-Dominguez, "Infrared thermal image segmentation using expectation-maximization-based clustering," STSIVA 2012 - 17th Symp. Image, Signal Process. Artif. Vis., pp. 223-226, 2012, doi: 10.1109/STSIVA.2012.6340586.
https://doi.org/10.1109/STSIVA.2012.6340586
C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V Maldague, "Nondestructive testing with thermography," Eur. J. Phys., vol. 34, no. November, pp. S91-S109, 2013, doi: 10.1088/0143-0807/34/6/S91.
https://doi.org/10.1088/0143-0807/34/6/S91
D. Balageas, "In search of early time ... - Article 2013," Adv. Opt. Technol., vol. 2013, no. January 2013, pp. 1-13, 2013, doi: http://dx.doi.org/10.1155/2013/314906.
https://doi.org/10.1155/2013/314906
A. D. Restrepo-Girón and H. Loaiza-Correa, "Background Thermal Compensation by Filtering for Contrast Enhancement in Active Thermography," J. Nondestruct. Eval., vol. 35, no. 1, pp. 1-11, 2016, doi: 10.1007/s10921-016-0336-x.
https://doi.org/10.1007/s10921-016-0336-x
D. Balageas and J. Roche, "Common tools for quantitative time resolved pulse and step heating thermography part 1 theoretical basics," 2014, no. July, doi: 10.13140/2.1.2645.4402.
https://doi.org/10.1080/17686733.2014.891324
J. M. Roche and D. Balageas, "2014-Common tools for quantitative time resolved pulse and step heating thermography part II: experimental validation," QIRT 2014 Conf., no. July, 2014, doi: 10.13140/2.1.1334.7207.
J. Roche, F. Leroy, and D. L. Balageas, "Information condensation in defect detection using TSR coefficients images," QIRT2014 Conférence, no. 1, 2014, doi: 10.13140/2.1.1596.8648.
J.-M. Roche and D. L. Balageas, "Detection and characterization of composite real-life damage by the TSR-polynomial coefficients RGB-projection technique," in Proceedings of the 2014 International Conference on Quantitative InfraRed Thermography, 2014, vol. 0, no. July, pp. 1-10, doi: 10.21611/qirt.2014.010.
https://doi.org/10.21611/qirt.2014.010
X. Maldague, F. Galmiche, and A. Ziadi, "Advances in pulsed phase thermography," Infrared Phys. Technol., vol. 43, no. 3-5, pp. 175-181, 2002, doi: 10.1016/S1350-4495(02)00138-X.
https://doi.org/10.1016/S1350-4495(02)00138-X
N. Rajic, "Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures," Compos. Struct., vol. 58, no. 4, pp. 521-528, Dec. 2002, doi: 10.1016/S0263-8223(02)00161-7.
https://doi.org/10.1016/S0263-8223(02)00161-7
V. P. Vavilov and A. O. Chulkov, "Thermal NDT of Composites in the Aero Space Industry : A Quantitative Approach," in 11th European Conference on Non-Destructive Testing (ECNDT 2014), 2014, no. Ecndt, pp. 1-10.
A. D. Restrepo-Giron and H. Loaiza-Correa, "New 3D Finite Difference Method for Thermal Contrast Enhancement in Slabs Pulsed Thermography Inspection," J. Nondestruct. Eval., pp. 62-73, 2013, doi: 10.1007/s10921-013-0203-y.
https://doi.org/10.1007/s10921-013-0203-y
E. Grinzato, Bison P.G., Marinetti S., and Vavilov V., "Thermal NDE enhanced by 3D numerical modeling applied to works of art," 15th World Conference on Non-destructive Testing, Rome, Italy, 2000. http://www.ndt.net/article/wcndt00/papers/idn909/idn909.htm (accessed Mar. 07, 2017).
A. D. Restrepo Girón, "Enhanced method for flaws depth estimation in CFRP slabs from FDTC thermal contrast sequences," Ing. e Investig., vol. 35, no. 3, pp. 61-68, 2015, doi: 10.15446/ing.investig.v35n3.50552.
https://doi.org/10.15446/ing.investig.v35n3.50552
M. A. Akhloufi and B. Verney, "Multimodal registration and fusion for 3D thermal imaging," Math. Probl. Eng., 2015, doi: 10.1155/2015/450101.
https://doi.org/10.1155/2015/450101
S. S. Pawar and V. P. Vavilov, "Applying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials," Int. J. Heat Mass Transf., vol. 94, pp. 56-65, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.11.018.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.018
Q. Zhang and X. Maldague, "An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing," Infrared Phys. Technol., vol. 74, pp. 11-20, 2016, doi: 10.1016/j.infrared.2015.11.003.
https://doi.org/10.1016/j.infrared.2015.11.003
C. San Martin, S. N. Torres, and J. E. Pezoa, "An effective reference-free performance metric for non-uniformity correction algorithms in infrared imaging system," Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet., pp. 576-577, 2007, doi: 10.1109/LEOS.2007.4382537.
https://doi.org/10.1109/LEOS.2007.4382537
V. Vavilov, "Noise-limited thermal/infrared nondestructive testing," NDT E Int., vol. 61, pp. 16-23, 2014, doi: 10.1016/j.ndteint.2013.09.002.
https://doi.org/10.1016/j.ndteint.2013.09.002
H. D. Benitez Restrepo, "Objective Image Quality Assessment in infrared non-destructive testing," in 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA), Sep. 2012, pp. 122-127, doi: 10.1109/STSIVA.2012.6340568.
https://doi.org/10.1109/STSIVA.2012.6340568
J. C. Garcia Alvarez, H. D. Benitez Restrepo, G. Castellano Dominguez, and T. Ramirez, "Non referenced Quality Assessment of Image Processing Methods in Infrared Non-destructive Testing ICIAP 2013," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8156, no. PART 1, pp. 722-732, 2013, doi: 10.1007/978-3-642-41181-6.
https://doi.org/10.1007/978-3-642-41181-6
F. Lopez, X. Maldague, and C. Ibarra-Castanedo, "Enhanced image processing for infrared non-destructive testing," Opto-Electronics Rev., vol. 22, no. 4, Jan. 2014, doi: 10.2478/s11772-014-0202-2.
https://doi.org/10.2478/s11772-014-0202-2
D. Balageas, J. Roche, and F. Leroy, "Quantitative Assessment of Defect Characterisation Using the TSR Coefficient Images," in QIRT-Asia, 2015, no. October, pp. 1-11.
https://doi.org/10.21611/qirt.2015.0028
D. L. Balageas, J.-M. Roche, and F.-H. Leroy, "Comparison and ranking procedure for an objective assessment of thermographic NDE methods," Proc. 2016 Int. Conf. Quant. InfraRed Thermogr., no. July, 2016, doi: 10.21611/qirt.2016.003.
https://doi.org/10.21611/qirt.2016.003
B. Liu, H. Zhang, H. Fernandes, and X. Maldague, "Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP," Sensors, vol. 16, no. 5, p. 743, 2016, doi: 10.3390/s16050743.
https://doi.org/10.3390/s16050743
V. Vavilov, S. Marinetti, and D. Nesteruk, "Accuracy issues in modeling thermal NDT problems," in Proceedings Volume 6939, Thermosense XXX;, 2008, no. March, p. 693913, doi: 10.1117/12.775684.
https://doi.org/10.1117/12.775684
F. Lopez, V. De Paulo Nicolau, C. Ibarra-Castanedo, and X. Maldague, "Thermal-numerical model and computational simulation of pulsed thermography inspection of carbon fiber-reinforced composites," Int. J. Therm. Sci., vol. 86, pp. 325-340, 2014, doi: 10.1016/j.ijthermalsci.2014.07.015.
https://doi.org/10.1016/j.ijthermalsci.2014.07.015
V. Vavilov, W. Ś, and D. Derusova, "Ultrasonic and optical stimulation in IR thermographic NDT of impact damage in carbon composites," Quant. infrared Thermogr., pp. 2-6, 2014, doi: 10.1080/17686733.2015.1046678.
https://doi.org/10.1080/17686733.2015.1046678
V. P. Vavilov, "Modeling thermal NDT problems," Int. J. Heat Mass Transf., vol. 72, pp. 75-86, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.084.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.084
S. Sojasi et al., "Infrared Testing of CFRP Components : Comparisons of Approaches using the Tanimoto Criterion," in NDT in Canada 2015 Conference, 2015, pp. 1-8.
G. Jinlong, L. Junyan, W. Fei, and W. Yang, "Inverse heat transfer approach for nondestructive estimation the size and depth of subsurface defects of CFRP composite using lock-in thermography," Infrared Phys. Technol., vol. 71, pp. 439-447, 2015, doi: 10.1016/j.infrared.2015.06.005.
https://doi.org/10.1016/j.infrared.2015.06.005
D. L. Balageas, "Thermal Imaging Methods," Encycl. Struct. Heal. Monit., no. August, 2008, doi: 10.1002/9780470061626.shm018.
https://doi.org/10.1002/9780470061626.shm018
A. Pereira F., J. Diniz M., C. Paskocimas, S. Nóbrega, F. de Araujo M., and A. Ricalde R., "Addition of magnetic markers for non-destructive evaluation of polymer composites," Mater. Res., vol. 14, no. 4, pp. 508-513, Dec. 2011, doi: 10.1590/S1516-14392011005000071.
https://doi.org/10.1590/S1516-14392011005000071
B. Milovanović and I. B. Pečur, "Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete," J. Imaging, vol. 2, no. 2, p. 11, 2016, doi: 10.3390/jimaging2020011.
https://doi.org/10.3390/jimaging2020011
O. Motato and H. Loaiza, "Identificación biométrica utilizando imágenes infrarrojas de la red vascular de la cara dorsal de la mano," Ing. e Investig., vol. 29, no. 1, pp. 90-100, 2009, Accessed: Mar. 10, 2017. [Online]. Available: http://www.redalyc.org/articulo.oa?id=64329113#.
K. Estupinan Roldan, M. A. Ortega Piedrahita, and H. D. Benitez, "Design and implementation of a protocol for acquisition and processing of infrared images obtained from hands," Symp. Signals, Images Artif. Vis. - 2013, STSIVA 2013, pp. 1-7, 2013, doi: 10.1109/STSIVA.2013.6644944.
https://doi.org/10.1109/STSIVA.2013.6644944
W. M. Liu, K. Chang, S. Yoon, and A. M. Gorbach, "Reconstruction of Thermal Signals in Infrared Images Reveals Temperature Perturbations during Full Forearm Occlusion," QIRT 2014 Conf., 2014, doi: 10.21611/qirt.2014.135.
https://doi.org/10.21611/qirt.2014.135
R. Gonzalez-Leal, M. Kurban, F. J. Gonzalez, and O. Cruz, "Quantitative human interpretation for breast thermography," in 15th Quantitative InfraRed Thermography Conference, 2020, pp. 1-5, doi: 10.21611/qirt.2020.078.
https://doi.org/10.21611/qirt.2020.078
S. Guerrero, H. Loaiza, and A. D. Restrepo, "Segmentación automática de imágenes térmicas de la mama como apoyo a la detección de cáncer," Sist. Telemática, vol. 12, no. 30, pp. 25-34, 2014, Accessed: Mar. 10, 2017. [Online]. Available: http://www.redalyc.org/articulo.oa?id=411534000002.
C. D. Ferrin and H. Loaiza, "A Real-Time Multispectral Computer Vision System for Morpho-Thermal Analysis of Footprint Plantar," IEEE Lat. Am. Trans., vol. 13, no. 8, pp. 2680-2686, 2015, Accessed: Mar. 10, 2017. [Online]. Available: http://ewh.ieee.org/reg/9/etrans/ieee/issues/vol13/vol13issue08Aug2015/13TLA8_32Ferrin.pdf.
https://doi.org/10.1109/TLA.2015.7332149
J. Roche and D. Balageas, "Advanced thermal imaging techniques for quantitative damage mapping of composite materials," in 6th International Symposium on NDT in Aerospace, 2014, no. November, pp. 12-17.
C. Rongier, R. Gilblas, Y. Le Maoult, L. Redjem-Saad, and F. Schmidt, "Infrared thermography applied to the validation of thermal simulation of highluminance LED used in automotive front lighting," in 15th Quantitative InfraRed Thermography Conference, 2020, pp. 1-2, doi: 10.21611/qirt.2020.002.
https://doi.org/10.21611/qirt.2020.002
Y. Kawai, M. Ishikawa, H. Nishino, H. Ishigaki, and K. Ogawa, "Estimation of remaining water in steel pipes using active thermography," in 15th Quantitative InfraRed Thermography Conference, 2020, pp. 1-6, doi: 10.21611/qirt.2020.094.
https://doi.org/10.21611/qirt.2020.094
M. Kopeć and B. Więcek, "AC temperature estimation of power electronic devices using 1D thermal modeling and IR thermography measurements," in 15th Quantitative InfraRed Thermography Conference, 2020, pp. 1-7, doi: 10.21611/qirt.2020.161.
https://doi.org/10.21611/qirt.2020.161
R. Usamentiaga, C. Ibarra-Castanedo, and X. Maldague, "More than Fifty Shades of Grey: Quantitative Characterization of Defects and Interpretation Using SNR and CNR," J. Nondestruct. Eval., vol. 37, no. 2, pp. 1-17, 2018, doi: 10.1007/s10921-018-0479-z.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Scientia et Technica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor y licencias
La revista es de acceso abierto gratuito y sus artículos se publican bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial-Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
Los autores de un artículo aceptado para publicación cederán la totalidad de los derechos patrimoniales a la Universidad Tecnológica de Pereira de manera gratuita, teniendo en cuenta lo siguiente: En caso de que el trabajo presentado sea aprobado para su publicación, los autores deben autorizar de manera ilimitada en el tiempo, a la revista para que pueda reproducirlo, editarlo, distribuirlo, exhibirlo y comunicarlo en cualquier lugar, ya sea por medios impresos, electrónicos, bases de datos, repositorios, discos ópticos, Internet o cualquier otro medio requerido.
Los cedentes mediante contrato CESIÓN DE DERECHOS PATRIMONIALES declaran que todo el material que forma parte del artículo está totalmente libre de derechos de autor de terceros y, por lo tanto, se hacen responsables de cualquier litigio o reclamación relacionada o reclamación relacionada con derechos de propiedad intelectual, exonerando de toda responsabilidad a la Universidad Tecnológica de Pereira (entidad editora) y a su revista Scientia et Technica. De igual forma, los autores aceptan que el trabajo que se presenta sea distribuido en acceso abierto gratuito, resguardando los derechos de autor bajo la licencia Creative Commons Atribución/Reconocimiento-No Comercial- Compartir bajo los mismos términos 4.0 Internacional — CC BY-NC-SA 4.0.
https://creativecommons.org/licenses/by-nc-sa/4.0/
A los autores, la revista Scientia et Technica tiene la obligación de respetarle los derechos morales (artículo 30 de la Ley 23 de 1982 del Gobierno Colombiano) que se les debe reconocen a estos la paternidad de la obra, el derecho a la integridad y el derecho de divulgación. Estos no se pueden ceder ni renunciar.