Simulación de un colector solar plano con almacenamiento térmico para el secado de alimentos


Autores/as

DOI:

https://doi.org/10.22517/23447214.24835

Palabras clave:

almacenamiento de energía térmica, colector solar, energía solar, secado, simulación numérica de fluidos

Resumen

Esta investigación aborda la simulación numérica de un fluido de trabajo, utilizando el software especializado SolidWorks Flow Simulation, analizando el comportamiento de un aire de secado en un colector solar plano con almacenamiento de energía térmica. Además, uno de los principales centros de estudio computacional es la relación entre caudal, temperatura del aire a la salida del colector y eficiencia; Este estudio permite a los investigadores una visión de los principios del diseño de estas tecnologías, especialmente si se enfoca en el secado de alimentos. A continuación, se hace una propuesta sobre los requisitos a tener en cuenta para el dimensionamiento de los colectores en función de los requisitos del producto a secar. Entre los resultados obtenidos, se establece que un colector correctamente diseñado y bajo un flujo de aire variable, en función de la intensidad de la irradiación en coordenadas y ubicación específicas, puede alcanzar eficiencias cercanas al 30% con temperaturas cercanas a los 60 ° C, siendo ideal para inyectar este fluido en una cámara de secado, donde se encuentra disponible el alimento a deshidratar. Para la selección del volumen del material para almacenamiento de energía, se recomienda tomar como base las temperaturas de fusión, con un flujo de aire constante, es normal que, dentro del sistema, la temperatura varíe dependiendo de la posición, por lo tanto, recomienda la aplicación de materiales con diferentes temperaturas de fusión, los cuales se encuentran estratégicamente ubicados dentro del tanque de almacenamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Arly Darío Rincón Quintero, Unidades Tecnológicas de Santander

was born in Aguachica, Cesar, Colombia in 1982. He received the degree in mechanical engineering from Francisco de Paula Santander University, Colombia, in 2005 and the degree Master in Energy Efficiency and Sustainability from the University of the Basque Country UPV/EHU, Bilbao, España, in 2013. He is currently pursuing the Ph.D. degree in Energy efficiency and sustainability in engineering and architecture with Basque Country UPV/EHU,Bilbao, España. He is a senior researcher before MinCiencias, Colombia associate professor at the Unidades Tecnologicas de Santander, in the Faculty of Natural Sciences and Engineering.

Luis Alfonso del Portillo Valdés, Universidad del País Vasco UPV/EHU

PhD in Energy and Fluidomechanical Engineering from the University of Valladolid, Industrial Engineer from the Higher Technical School of Engineering of the UNED (National University of Distance Education: Madrid ES), and Industrial Technical Engineer from the University School of Industrial Technical Engineering of Bilbao, UPV/EHU and the Research Group ENEDI (Energy in Building).

Camilo Leonardo Sandoval Rodriguez, Unidades Tecnológicas de Santander

Was born in Bucaramanga, Santander, on July 24, 1977. Electronic Engineer from the Industrial University of Santander, Master in Electronic Engineering from the Industrial University of Santander and PhD in electronics and communications from the University of the Basque Country EHU-UPV, Spain. Professor of the Technological Units of Santander, attached to the Coordination of Electromechanics and director of the Research Group on Energy Systems, Automation and Control GISEAC.

Brayan Eduardo Tarazona Romero, Unidades Tecnológicas de Santander

Was born in Floridablanca, Santander, on August 21, 1992. Electromechanical technologist of the Unidades Tecnológicas de Santander, Colombia in 2013. Ingeniero Electromecánico de las Unidades Tecnológicas de Santander, Colombia en el año 2015. Master in Renewable Energies and Energy Efficiency from the Open University of Madrid, Spain in 2018 and PhD in Energy Efficiency and Sustainability in Engineering and Architecture from the University of the Basque Country EHU-UPV, Spain. Professor of the Technological Units of Santander, attached to the Coordination of Electromechanics, the seedbed Technological Evolution EVOTEC and the Research Group in Energy Systems, Automation and Control GISEAC.

Wilmar Leonardo Rondón Romero, Unidades Tecnológicas de Santander

was born in Bucaramanga, Santander, Colombia in 1993. He received the degree in Electromechanical engineering from Unidades Tecnológicas de Santander, in 2017. He is a junior researcher before MinCiencias, Colombia.

Citas

[1] D. Kizildag, J. Castro, H. Kessentini, E. Schillaci, and J. Rigola, "First test field performance of highly efficient flat plate solar collectors with transparent insulation and low-cost overheating protection," Sol. Energy, vol. 236, no. February, pp. 239-248, 2022. DOI: https://doi.org/10.1016/j.solener.2022.02.007

[2] B. V. Balakin, M. Stava, and A. Kosinska, "Photothermal convection of a magnetic nanofluid in a direct absorption solar collector," Sol. Energy, vol. 239, no. April, pp. 33-39, 2022. DOI: https://doi.org/10.1016/j.solener.2022.04.027

[3] W. Ajbar, J. A. Hernández, A. Parrales, and L. Torres, "Thermal efficiency improvement of parabolic trough solar collector using different kinds of hybrid nanofluids," Case Stud. Therm. Eng., vol. 42, no. November 2022, p. 102759, 2023. DOI: https://doi.org/10.1016/j.csite.2023.102759

[4] D. García-Menéndez, J. C. Ríos-Fernández, A. M. Blanco-Marigorta, and M. J. Suárez-López, "Dynamic simulation and exergetic analysis of a solar thermal collector installation," Alexandria Eng. J., vol. 61, no. 2, pp. 1665-1677, 2022. DOI: https://doi.org/10.1016/j.aej.2021.06.075

[5] A. A. Al-Tabbakh, "Numerical transient modeling of a flat plate solar collector," Results Eng., vol. 15, no. August, p. 100580, 2022, DOI: https://doi.org/10.1016/j.rineng.2022.100580

[6] D. De Maio, C. D'Alessandro, A. Caldarelli, M. Musto, and R. Russo, "Solar selective coatings for evacuated flat plate collectors: Optimisation and efficiency robustness analysis," Sol. Energy Mater. Sol. Cells, vol. 242, no. February, p. 111749, 2022. DOI: https://doi.org/10.1016/j.solmat.2022.111749

[7] A. Dhaundiyal and D. Atsu, "The effect of thermo-fluid properties of air on the solar collector system," Alexandria Eng. J., vol. 61, no. 4, pp. 2825-2839, 2022. DOI: https://doi.org/10.1016/j.aej.2021.08.015

[8] K. N. Yehualashet, O. Fatoba, and S. M. Asfaw, "Experimental study and numerical analysis of thermal performance of corrugated plate solar collector," Mater. Today Proc., vol. 62, pp. 2849-2856. 2022, DOI: https://doi.org/10.1016/j.matpr.2022.02.414

[9] A. O. Al-Sulttani et al., "Thermal effectiveness of solar collector using Graphene nanostructures suspended in ethylene glycol-water mixtures," Energy Reports, vol. 8, pp. 1867-1882, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.01.007

[10] A. M. Ajeena, P. Víg, and I. Farkas, "A comprehensive analysis of nanofluids and their practical applications for flat plate solar collectors: Fundamentals, thermophysical properties, stability, and difficulties," Energy Reports, vol. 8, pp. 4461-4490, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.03.088

[11] O. Panagopoulos, A. A. Argiriou, A. Dokouzis, S. O. Alexopoulos, and J. Göttsche, "Optical and thermal performance simulation of a micro-mirror solar collector," Energy Reports, vol. 8, pp. 6624-6632, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.05.007

[12] L. Xu, A. Khalifeh, A. Khandakar, and B. Vaferi, "Numerical investigating the effect of Al2O3-water nanofluids on the thermal efficiency of flat plate solar collectors," Energy Reports, vol. 8, pp. 6530-6542, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.05.012

[13] E. Gaudino, M. Musto, A. Caldarelli, D. De Luca, E. Di Gennaro, and R. Russo, "Evaluation of the absorber temperature frequency function valid for evacuated flat plate collectors," Energy Reports, vol. 8, pp. 1071-1080, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.05.275

[14] Y. Wenceslas Koholé, F. Cyrille Vincelas Fohagui, and G. Tchuen, "Flat-plate solar collector thermal performance assessment via energy, exergy and irreversibility analysis," Energy Convers. Manag. X, vol. 15, no. June, 2022. DOI: https://doi.org/10.1016/j.ecmx.2022.100247

[15] A. Al-Manea, R. Al-Rbaihat, H. T. Kadhim, A. Alahmer, T. Yusaf, and K. Egab, "Experimental and numerical study to develop TRANSYS model for an active flat plate solar collector with an internally serpentine tube receiver," Int. J. Thermofluids, vol. 15, no. August, p. 100189, 2022. DOI: https://doi.org/10.1016/j.ijft.2022.100189

[16] T. desisa Rago, "Experimental and Numerical Investigation of Heat Transfer Characteristics in Solar Flat Plate Collector Using Nanofluids," SSRN Electron. J., vol. 18, no. March, p. 100325, 2022. DOI: https://doi.org/10.2139/ssrn.4282071

[17] P. Pourmoghadam, M. Farighi, F. Pourfayaz, and A. Kasaeian, "Annual transient analysis of energetic, exergetic, and economic performances of solar cascade organic Rankine cycles integrated with PCM-based thermal energy storage systems," Case Stud. Therm. Eng., vol. 28, p. 101388, 2021. DOI: https://doi.org/10.1016/j.csite.2021.101388

[18] K. Lentswe, A. Mawire, P. Owusu, and A. Shobo, "A review of parabolic solar cookers with thermal energy storage," Heliyon, vol. 7, no. 10, p. e08226, 2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e08226

[19] G. Sadeghi, M. Najafzadeh, and H. Safarzadeh, "Utilizing Gene-Expression Programming in Modelling the Thermal Performance of Evacuated Tube Solar Collectors," J. Energy Storage, vol. 30, no. March 2020, p. 101546, 2020, DOI: https://doi.org/10.1016/j.est.2020.101546

[20] J. Deng, T. S. O'Donovan, Z. Tian, J. King, and S. Speake, "Thermal performance predictions and tests of a novel type of flat plate solar thermal collectors by integrating with a freeze tolerance solution," Energy Convers. Manag., vol. 198, no. April, p. 111784, 2019, DOI: https://doi.org/10.1016/j.enconman.2019.111784

[21] V. Unterberger, K. Lichtenegger, V. Kaisermayer, M. Gölles, and M. Horn, "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Appl. Energy, vol. 293, p. 116891, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.116891

[22] W. Villasmil, M. Troxler, R. Hendry, P. Schuetz, and J. Worlitschek, "Control strategies of solar heating systems coupled with seasonal thermal energy storage in self-sufficient buildings," J. Energy Storage, vol. 42, 2021. DOI: https://doi.org/10.1016/j.est.2021.103069

[23] M. M. Ali, O. K. Ahmed, and E. F. Abbas, "Performance of solar pond integrated with photovoltaic/thermal collectors," Energy Reports, vol. 6, pp. 3200-3211, 2020. DOI: https://doi.org/10.1016/j.egyr.2020.11.037

[24] T. Zhang, G. Lu, X. Zhai, and B. Li, "Structure optimization of a phase change material integrated solar air collector/storage unit based upon phase change analysis," Energy Reports, vol. 7, pp. 1828-1836, 2021, DOI: https://doi.org/10.1016/j.egyr.2021.03.040

Descargas

Publicado

2023-03-31

Cómo citar

Rincón Quintero, A. D., del Portillo Valdés, L. A., Sandoval Rodriguez, C. L., Tarazona Romero, B. E., & Rondón Romero, W. L. (2023). Simulación de un colector solar plano con almacenamiento térmico para el secado de alimentos . Scientia Et Technica, 28(01), 15–22. https://doi.org/10.22517/23447214.24835