Design and construction of a solar tracking system for parabolic-trough collector prototype


Authors

DOI:

https://doi.org/10.22517/23447214.24792

Keywords:

Control Algorithm, Control Systems, Parabolic-Trough Collector, Solar Collector, Solar Concentration

Abstract

The search for technological alternatives to satisfy diverse global needs has triggered an arduous process of research and technological developments worldwide for the use of renewable resources. For their part, linear parabolic trough collectors have proven to be an alternative for the water heating process and for the production of electric energy. For its part, the research group in energy systems, automation and control (GISEAC) of the Technological Units of Santander, developed a prototype parabolic trough collector with low-cost materials available in the region (Bucaramanga, Colombia). Consequently, in order to improve the performance of the device, this paper presents the sizing, implementation and testing of a single-axis solar trajectory tracking system in a small-scale parabolic trough collector, applying a closed-loop control system. The control system is governed by a system integrated by an ESP32 module and a Raspberry PI3 microcontroller. The axis of the device is coupled to a mechanism composed of a gear and chain transmission system, directly coupled to an electric motor. The positioning of the collector angle is determined by a sensor that directly measures the amount of LUX and identifies by means of the developed algorithm, the location with the highest levels of direct incident solar radiation. In this way, the system can track the solar position throughout the course of the solar day. Finally, it should be noted that the maximum percentage of deviation of the solar tracking system is less than 1%. At the same time, the performance of the implemented solar trajectory tracking system “Automatic solar tracking system” increased by more than 40% with respect to the initial tracking system “Manual solar tracking system”.

Downloads

Download data is not yet available.

Author Biographies

Brayan Eduardo Tarazona-Romero, Unidades Tecnológicas de Santander

was born in Floridablanca, Santander, Colombia in 1992. He received the Engineering degree in electromechanical from the Unidades Tecnológicas de Santander, Colombia, in 2015, the Magister degree in Renewable energy and energetic efficiency from the Universidad a Distancia de Madrid, España, in 2018 and currently study a Ph.D. in Energy efficiency and sustainability in engineering and architecture from Universidad del Pais Vasco, España. From 2016 to 2018, he was a professor at the Unidades Tecnológicas de Santander, Colombia. In 2019 he was a parttime research professor at the Unidades Tecnológicas de Santander, Colombia. Currently, he is a full-time research professor at the Unidades Tecnológicas de Santander, Colombia. His research interests include automation and industrial control, renewable energy, alternative solar thermal alternative solar desalination systems. Mr. Brayan´s attached to the Research Group on Energy Systems, Control and Automation GISEAC (Unidades Tecnológicas de Santander). He is previously recognized as a Minciencias, Colombia as a Junior investigator.

Arly Darío Rincón Quintero , Unidades Tecnológicas de Santander

was born in Aguachica, Cesar, Colombia in 1982. He received the degree in mechanical engineering from Francisco de Paula Santander University, Colombia, in 2005 and the degree Master in Energy Efficiency and Sustainability from the University of the Basque Country UPV/EHU, Bilbao, España, in 2013. He is currently pursuing the Ph.D. degree in Energy efficiency and sustainability in engineering and architecture with Basque Country UPV/EHU, Bilbao, España. He is a senior researcher before Minciencias, Colombia associate professor at the Unidades Tecnológicas de Santander, in the Faculty of Natural Sciences and Engineering.

Javier Gonzalo Ascanio Villabona, Unidades Tecnológicas de Santander

was born in Bucaramanga, Santander, Colombia in 1990. He received the Engineering degree in electromechanical from the Unidades Tecnológicas de Santander, Colombia, in 2015, the Magister degree in Renewable energy and energetic efficiency from the Universidad a Distancia de Madrid, España, in 2018 and currently study a Ph.D. in Energy efficiency and sustainability in engineering and architecture from Universidad del Pais Vasco, España. From 2015 to 2016, he was a professor of Unidades Tecnológicas de Santander (UTS). From 2017 to 2018 he was a part-time research professor UTS, Colombia. Since 2019 to Currently, he is a full-time research professor at the Technological Units of Santander, Colombia. His research interest area is the renewable energy, energetic efficiency and the conductive materials analysis. Mr. Javier´s attached to the Research Group on Energy Systems, Control and Automation GISEAC of the Unidades Tecnológicas de Santander. He is previously recognized as a Minciencias, Colombia as a Junior investigator. Since 2018 he is the leader of the EVOTEC research hotbed, at the Unidades Tecnológicas de Santander.

Camilo Leonardo Sandoval Rodriguez, Unidades Tecnológicas de Santander

is an Electronic Engineer, Master in Electronic Engineering and Ph.D (c) in Electronics and Telecommunications from the Universidad del Pais Vasco. Leader of the research group in energy systems, automation and control GISEAC of the (Unidades Tecnológicas de Santander) UTS. His areas of interest are: automatic control, signal processing and pattern recognition, applied to the analysis of materials and structures, and biomedical engineering. With 14 publications, more than 100 directed engineering degree works and more than 30 participations as a speaker in scientific and academic events. Consultant specialized in automatic control systems, participation in various technological development and innovation projects. He is recognized as an Associate Researcher (I) according to the Ministry of Science, Technology and Innovation of the Republic of Colombia, from 2018 to the present.

References

[1] V. K. Jebasingh y G. M. J. Herbert, "A review of solar parabolic trough collector", Renew. Sustain. Energy Rev., vol. 54, pp. 1085-1091, feb. 2016, DOI: https://doi.org/10.1016/j.rser.2015.10.043

[2] B. E. Tarazona-Romero, A. Campos-Celador, y Y. A. Maldonado-Muñoz, "Can solar desalination be small and beautiful? A critical review of existing technology under the appropriate technology paradigm", Energy Res. Soc. Sci., vol. 88, p. 102510, jun. 2022, DOI: https://doi.org/10.1016/j.erss.2022.102510.

[3] A. Z. Hafez et al., "Design analysis of solar parabolic trough thermal collectors", Renew. Sustain. Energy Rev., vol. 82, pp. 1215-1260, feb. 2018, DOI: https://doi.org/10.1016/j.rser.2017.09.010

[4] B. E. Tarazona-Romero, A. C. Celador, C. L. S. Rodriguez, J. G. A. Villabona, y A. D. R. Quintero, "Design and construction of a solar tracking system for Linear Fresnel Concentrator", Period. Eng. Nat. Sci. PEN, vol. 9, n.o 4, Art. n.o 4, oct. 2021, DOI: https://doi.org/10.21533/pen.v9i4.1988.

[5] A. Herez, H. El Hage, T. Lemenand, M. Ramadan, y M. Khaled, "Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems", Sol. Energy, vol. 207, pp. 1321-1347, sep. 2020, DOI: https://doi.org/10.1016/j.solener.2020.07.062

[6] R. Kumar y M. A. Rosen, "A critical review of photovoltaic-thermal solar collectors for air heating", Appl. Energy, vol. 88, n.o 11, pp. 3603-3614, nov. 2011, DOI: https://doi.org/10.1016/j.apenergy.2011.04.044

[7] B. E. Tarazona-Romero, A. Campos-Celador, O. Lengerke-Perez, N. Y. Castillo-Leon, y A. D. Rincon-Quintero, "Appropriate Technology for Solar Thermal Desalination by Concentration Applied the Humidification-Dehumidification Method", en Applied Technologies, Cham, 2023, pp. 415-428. DOI: 10https://doi.org/10.1007/978-3-031-24971-6_30.

[8] B. E. Tarazona-Romero, Á. Campos Celador, Y. A. Muñoz Maldonado, C. Sandoval Rodríguez, y J. G. Ascanio Villabona, "Prototype of lineal solar collector Fresnel", Visión Electrónica, vol. 14, n.o 1, p. 4, 2020. DOI: https://doi.org/10.14483/22484728.16013

[9] K. Lovegrove y W. Stein, "Chapter 1 - Introduction to concentrating solar power technology", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 3-17. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00012-8

[10] B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D. Rincón-Quintero, "Development of a Fresnel Artisanal System for the Production of Hot Water or Steam", en Recent Advances in Electrical Engineering, Electronics and Energy, Cham, 2021, pp. 196-209. DOI: https://doi.org/10.1007/978-3-030-72212-8_15

[11] W.-D. Steinmann, "Thermal energy storage systems for concentrating solar power plants", 2021, pp. 399-440. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00008-6.

[12] H. Price et al., "Chapter 20 - Concentrating solar power best practices", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725-757. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00020-7.

[13] P. V. Gharat, S. S. Bhalekar, V. H. Dalvi, S. V. Panse, S. P. Deshmukh, y J. B. Joshi, "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review", Renew. Sustain. Energy Rev., vol. 145, p. 111002, jul. 2021, DOI: 10.1016/j.rser.2021.111002.https://doi.org/10.1016/j.rser.2021.111002

[14] E. Z. Moya, "7 - Parabolic-trough concentrating solar power (CSP) systems", en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 197-239. DOI: https://doi.org/10.1533/9780857096173.2.197.

[15] E. Z. Moya, "Chapter 7 - Parabolic-trough concentrating solar power systems", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 219-266. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00009-8

[16] E. Zarza-Moya, "7 - Concentrating Solar Thermal Power", en A Comprehensive Guide to Solar Energy Systems, T. M. Letcher y V. M. Fthenakis, Eds. Academic Press, 2018, pp. 127-148. DOI: https://doi.org/10.1016/B978-0-12-811479-7.00007-5.

[17] G. Barone, A. Buonomano, C. Forzano, y A. Palombo, "Chapter 6 - Solar thermal collectors", en Solar Hydrogen Production, F. Calise, M. D. D'Accadia, M. Santarelli, A. Lanzini, y D. Ferrero, Eds. Academic Press, 2019, pp. 151-178. DOI: https://doi.org/10.1016/B978-0-12-814853-2.00006-0.

[18] C. B. Anfinsen, "Solar Energy", Science, vol. 192, n.o 4236, pp. 202-202, abr. 1976 DOI: https://doi.org/10.1126/science.192.4236.202

[19] B. E. Tarazona-Romero, "Evaluation of the incidence of optical and physical characteristics on the performance of a Fresnel Linear Collector prototype", Period. Eng. Nat. Sci. PEN, vol. 11, n.o 1, Art. n.o 1, feb. 2023, DOI: https://doi.org/10.21533/pen.v11i1.3105

[20] M. Malekan, A. Khosravi, y M. El Haj Assad, "Chapter 6 - Parabolic trough solar collectors", en Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds. Academic Press, 2021, pp. 85-100. DOI: https://doi.org/10.1016/B978-0-12-821602-6.00007-9

[21] J. Fredriksson, M. Eickhoff, L. Giese, y M. Herzog, "A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application", Sol. Energy, vol. 215, pp. 266-310, feb. 2021, DOI: https://doi.org/10.1016/j.solener.2020.12.017

[22] S. Toghyani, E. Baniasadi, y E. Afshari, "Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector", Energy Convers. Manag., vol. 121, pp. 93-104, ago. 2016, DOI: https://doi.org/10.1016/j.enconman.2016.05.029

[23] R. Silva, M. Pérez, M. Berenguel, L. Valenzuela, y E. Zarza, "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications", Appl. Energy, vol. 121, pp. 233-244, may 2014, DOI: https://doi.org/10.1016/j.apenergy.2014.01.095

[24] R. V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, y A. G. Quiroga, "Exergy analysis of parabolic trough solar receiver", Appl. Therm. Eng., vol. 67, n.o 1, pp. 579-586, jun. 2014, DOI: https://doi.org/10.1016/j.applthermaleng.2014.03.053

[25] S. Peng, H. Hong, H. Jin, y Z. Zhang, "A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants", Sol. Energy, vol. 98, pp. 492-502, dic. 2013, DOI: https://doi.org/10.1016/j.solener.2013.09.039

[26] Natraj, B. N. Rao, y K. S. Reddy, "Wind load and structural analysis for standalone solar parabolic trough collector", Renew. Energy, vol. 173, pp. 688-703, ago. 2021, DOI: https://doi.org/10.1016/j.renene.2021.04.007.

[27] S. A. Kalogirou, "A detailed thermal model of a parabolic trough collector receiver", Energy, vol. 48, n.o 1, pp. 298-306, dic. 2012, DOI: https://doi.org/10.1016/j.energy.2012.06.023 28[28] F. I. Nascimento, E. W. Zavaleta-Aguilar, y J. R. Simões-Moreira, "Algorithm for sizing parabolic-trough solar collectors", Therm. Sci. Eng. Prog., p. 100932, abr. 2021, DOI: https://doi.org/10.1016/j.tsep.2021.100932.

[29] A. Z. Hafez et al., "Design analysis of solar parabolic trough thermal collectors", Renew. Sustain. Energy Rev., vol. 82, pp. 1215-1260, feb. 2018, DOI: https://doi.org/10.1016/j.rser.2017.09.010

[30] W. Qu, R. Wang, H. Hong, J. Sun, y H. Jin, "Test of a solar parabolic trough collector with rotatable axis tracking", Appl. Energy, vol. 207, pp. 7-17, dic. 2017, DOI: https://doi.org/10.1016/j.apenergy.2017.05.114

[31] Y. Yao, Y. Hu, S. Gao, G. Yang, y J. Du, "A multipurpose dual-axis solar tracker with two tracking strategies", Renew. Energy, vol. 72, pp. 88-98, dic. 2014, DOI: https://doi.org/10.1016/j.renene.2014.07.002

[32] M. S. Al-Soud, E. Abdallah, A. Akayleh, S. Abdallah, y E. S. Hrayshat, "A parabolic solar cooker with automatic two axes sun tracking system", Appl. Energy, vol. 87, n.o 2, pp. 463-470, feb. 2010, DOI: https://doi.org/10.1016/j.apenergy.2009.08.035

[33] W. Schiel y T. Keck, "Chapter 9 - Parabolic dish concentrating solar power systems", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 311-355. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00007-4.

[34] C. Chang, "5 - Tracking solar collection technologies for solar heating and cooling systems", en Advances in Solar Heating and Cooling, R. Z. Wang y T. S. Ge, Eds. Woodhead Publishing, 2016, pp. 81-93. DOI: https://doi.org/10.1016/B978-0-08-100301-5.00005-9.

[35] D. Sakthivadivel, K. Balaji, D. Dsilva Winfred Rufuss, S. Iniyan, y L. Suganthi, "Chapter 1 - Solar energy technologies: principles and applications", en Renewable-Energy-Driven Future, J. Ren, Ed. Academic Press, 2021, pp. 3-42. DOI: https://doi.org/10.1016/B978-0-12-820539-6.00001-7.

[36] J. D. Aequez Florez y M. Y. Almeida Lozano, "Diseño y construcción de un prototipo de colector solar cilíndrico parabólico para la producción de vapor teniendo en cuenta las condiciones climáticas de la zona en las que se encuentra las unidades tecnologías de Santander", Pregrado, Unidades Tecnologicas de Santader, Bucaramanga, 2019.

Downloads

Published

2023-03-31 — Updated on 2023-03-31

Versions

How to Cite

Tarazona-Romero, B. E., Rincón Quintero , A. D. ., Ascanio Villabona, J. G. ., & Sandoval Rodriguez, C. L. (2023). Design and construction of a solar tracking system for parabolic-trough collector prototype. Scientia Et Technica, 28(01), 6–14. https://doi.org/10.22517/23447214.24792