Diseño y construcción de un sistema de seguimiento solar para un prototipo de colector cilindro-parabólico


Autores/as

DOI:

https://doi.org/10.22517/23447214.24792

Palabras clave:

Algoritmo de Control, Colector Cilindro-Parabólico, Colector Solar, Concentración Solar, Sistema de Control

Resumen

La búsqueda de alternativas tecnológicas para satisfacer diversas necesidades globales, ha desencadenado un arduo proceso de investigación y desarrollos tecnológicos a nivel mundial para el aprovechamiento de los recursos renovables. Por su parte, los colectores lineales cilindro-parabólicos, han demostrado ser una alternativa para realizar el proceso de calentamiento de agua y para la producción de energia eléctrica. Por su parte, el grupo de investigación en sistemas de energia, automatización y control (GISEAC) de las unidades Tecnológicas de Santander, desarrollo un prototipo de colector Cilindro-Parabólico con materiales de bajo coste y disponibles en la región (Bucaramanga, Colombia). En consecuente, para mejorar el rendimiento del dispositivo, en este documento se presenta el dimensionamiento, implementacion y testeado de un sistema de seguimiento de trayectoria solar en un solo eje, en un colector Cilindro-Parabólico a pequeña escala, aplicando un sistema de control de lazo cerrado. El sistema de control está gobernado por un sistema integrado por un módulo ESP32 y un microcontrolador Raspberry PI3. El eje del dispositivo esta acoplado a un mecanismo compuesto por un sistema de transmisión de engranajes y cadenas, acoplado directamente a un motor eléctrico. El posicionamiento del Angulo del colector está determinado por  un sensor que mide directamente la cantidad de LUX e identifica por medio del algoritmo desarrollado, la ubicación con mayores niveles  de radiación solar directa incidente. De esta manera, el sistema puede seguir la posición solar durante todo el transcurso del día solar. Finalmente, se puede resaltar que el porcentaje máximo de desviación del sistema de  seguimiento solar, es inferior al 1%. A su vez, el rendimiento del sistema de seguimiento de trayectoria solar implementado “Sistema de seguimiento solar Automático”, aumento en un porcentaje superior al 40 % respecto al sistema de seguimiento inicial “Sistema de seguimiento solar manual”.  

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Brayan Eduardo Tarazona-Romero, Unidades Tecnológicas de Santander

was born in Floridablanca, Santander, Colombia in 1992. He received the Engineering degree in electromechanical from the Unidades Tecnológicas de Santander, Colombia, in 2015, the Magister degree in Renewable energy and energetic efficiency from the Universidad a Distancia de Madrid, España, in 2018 and currently study a Ph.D. in Energy efficiency and sustainability in engineering and architecture from Universidad del Pais Vasco, España. From 2016 to 2018, he was a professor at the Unidades Tecnológicas de Santander, Colombia. In 2019 he was a parttime research professor at the Unidades Tecnológicas de Santander, Colombia. Currently, he is a full-time research professor at the Unidades Tecnológicas de Santander, Colombia. His research interests include automation and industrial control, renewable energy, alternative solar thermal alternative solar desalination systems. Mr. Brayan´s attached to the Research Group on Energy Systems, Control and Automation GISEAC (Unidades Tecnológicas de Santander). He is previously recognized as a Minciencias, Colombia as a Junior investigator.

Arly Darío Rincón Quintero , Unidades Tecnológicas de Santander

was born in Aguachica, Cesar, Colombia in 1982. He received the degree in mechanical engineering from Francisco de Paula Santander University, Colombia, in 2005 and the degree Master in Energy Efficiency and Sustainability from the University of the Basque Country UPV/EHU, Bilbao, España, in 2013. He is currently pursuing the Ph.D. degree in Energy efficiency and sustainability in engineering and architecture with Basque Country UPV/EHU, Bilbao, España. He is a senior researcher before Minciencias, Colombia associate professor at the Unidades Tecnológicas de Santander, in the Faculty of Natural Sciences and Engineering.

Javier Gonzalo Ascanio Villabona, Unidades Tecnológicas de Santander

was born in Bucaramanga, Santander, Colombia in 1990. He received the Engineering degree in electromechanical from the Unidades Tecnológicas de Santander, Colombia, in 2015, the Magister degree in Renewable energy and energetic efficiency from the Universidad a Distancia de Madrid, España, in 2018 and currently study a Ph.D. in Energy efficiency and sustainability in engineering and architecture from Universidad del Pais Vasco, España. From 2015 to 2016, he was a professor of Unidades Tecnológicas de Santander (UTS). From 2017 to 2018 he was a part-time research professor UTS, Colombia. Since 2019 to Currently, he is a full-time research professor at the Technological Units of Santander, Colombia. His research interest area is the renewable energy, energetic efficiency and the conductive materials analysis. Mr. Javier´s attached to the Research Group on Energy Systems, Control and Automation GISEAC of the Unidades Tecnológicas de Santander. He is previously recognized as a Minciencias, Colombia as a Junior investigator. Since 2018 he is the leader of the EVOTEC research hotbed, at the Unidades Tecnológicas de Santander.

Camilo Leonardo Sandoval Rodriguez, Unidades Tecnológicas de Santander

is an Electronic Engineer, Master in Electronic Engineering and Ph.D (c) in Electronics and Telecommunications from the Universidad del Pais Vasco. Leader of the research group in energy systems, automation and control GISEAC of the (Unidades Tecnológicas de Santander) UTS. His areas of interest are: automatic control, signal processing and pattern recognition, applied to the analysis of materials and structures, and biomedical engineering. With 14 publications, more than 100 directed engineering degree works and more than 30 participations as a speaker in scientific and academic events. Consultant specialized in automatic control systems, participation in various technological development and innovation projects. He is recognized as an Associate Researcher (I) according to the Ministry of Science, Technology and Innovation of the Republic of Colombia, from 2018 to the present.

Citas

[1] V. K. Jebasingh y G. M. J. Herbert, "A review of solar parabolic trough collector", Renew. Sustain. Energy Rev., vol. 54, pp. 1085-1091, feb. 2016, DOI: https://doi.org/10.1016/j.rser.2015.10.043

[2] B. E. Tarazona-Romero, A. Campos-Celador, y Y. A. Maldonado-Muñoz, "Can solar desalination be small and beautiful? A critical review of existing technology under the appropriate technology paradigm", Energy Res. Soc. Sci., vol. 88, p. 102510, jun. 2022, DOI: https://doi.org/10.1016/j.erss.2022.102510.

[3] A. Z. Hafez et al., "Design analysis of solar parabolic trough thermal collectors", Renew. Sustain. Energy Rev., vol. 82, pp. 1215-1260, feb. 2018, DOI: https://doi.org/10.1016/j.rser.2017.09.010

[4] B. E. Tarazona-Romero, A. C. Celador, C. L. S. Rodriguez, J. G. A. Villabona, y A. D. R. Quintero, "Design and construction of a solar tracking system for Linear Fresnel Concentrator", Period. Eng. Nat. Sci. PEN, vol. 9, n.o 4, Art. n.o 4, oct. 2021, DOI: https://doi.org/10.21533/pen.v9i4.1988.

[5] A. Herez, H. El Hage, T. Lemenand, M. Ramadan, y M. Khaled, "Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems", Sol. Energy, vol. 207, pp. 1321-1347, sep. 2020, DOI: https://doi.org/10.1016/j.solener.2020.07.062

[6] R. Kumar y M. A. Rosen, "A critical review of photovoltaic-thermal solar collectors for air heating", Appl. Energy, vol. 88, n.o 11, pp. 3603-3614, nov. 2011, DOI: https://doi.org/10.1016/j.apenergy.2011.04.044

[7] B. E. Tarazona-Romero, A. Campos-Celador, O. Lengerke-Perez, N. Y. Castillo-Leon, y A. D. Rincon-Quintero, "Appropriate Technology for Solar Thermal Desalination by Concentration Applied the Humidification-Dehumidification Method", en Applied Technologies, Cham, 2023, pp. 415-428. DOI: 10https://doi.org/10.1007/978-3-031-24971-6_30.

[8] B. E. Tarazona-Romero, Á. Campos Celador, Y. A. Muñoz Maldonado, C. Sandoval Rodríguez, y J. G. Ascanio Villabona, "Prototype of lineal solar collector Fresnel", Visión Electrónica, vol. 14, n.o 1, p. 4, 2020. DOI: https://doi.org/10.14483/22484728.16013

[9] K. Lovegrove y W. Stein, "Chapter 1 - Introduction to concentrating solar power technology", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 3-17. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00012-8

[10] B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, y A. D. Rincón-Quintero, "Development of a Fresnel Artisanal System for the Production of Hot Water or Steam", en Recent Advances in Electrical Engineering, Electronics and Energy, Cham, 2021, pp. 196-209. DOI: https://doi.org/10.1007/978-3-030-72212-8_15

[11] W.-D. Steinmann, "Thermal energy storage systems for concentrating solar power plants", 2021, pp. 399-440. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00008-6.

[12] H. Price et al., "Chapter 20 - Concentrating solar power best practices", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725-757. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00020-7.

[13] P. V. Gharat, S. S. Bhalekar, V. H. Dalvi, S. V. Panse, S. P. Deshmukh, y J. B. Joshi, "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review", Renew. Sustain. Energy Rev., vol. 145, p. 111002, jul. 2021, DOI: 10.1016/j.rser.2021.111002.https://doi.org/10.1016/j.rser.2021.111002

[14] E. Z. Moya, "7 - Parabolic-trough concentrating solar power (CSP) systems", en Concentrating Solar Power Technology, K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2012, pp. 197-239. DOI: https://doi.org/10.1533/9780857096173.2.197.

[15] E. Z. Moya, "Chapter 7 - Parabolic-trough concentrating solar power systems", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 219-266. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00009-8

[16] E. Zarza-Moya, "7 - Concentrating Solar Thermal Power", en A Comprehensive Guide to Solar Energy Systems, T. M. Letcher y V. M. Fthenakis, Eds. Academic Press, 2018, pp. 127-148. DOI: https://doi.org/10.1016/B978-0-12-811479-7.00007-5.

[17] G. Barone, A. Buonomano, C. Forzano, y A. Palombo, "Chapter 6 - Solar thermal collectors", en Solar Hydrogen Production, F. Calise, M. D. D'Accadia, M. Santarelli, A. Lanzini, y D. Ferrero, Eds. Academic Press, 2019, pp. 151-178. DOI: https://doi.org/10.1016/B978-0-12-814853-2.00006-0.

[18] C. B. Anfinsen, "Solar Energy", Science, vol. 192, n.o 4236, pp. 202-202, abr. 1976 DOI: https://doi.org/10.1126/science.192.4236.202

[19] B. E. Tarazona-Romero, "Evaluation of the incidence of optical and physical characteristics on the performance of a Fresnel Linear Collector prototype", Period. Eng. Nat. Sci. PEN, vol. 11, n.o 1, Art. n.o 1, feb. 2023, DOI: https://doi.org/10.21533/pen.v11i1.3105

[20] M. Malekan, A. Khosravi, y M. El Haj Assad, "Chapter 6 - Parabolic trough solar collectors", en Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds. Academic Press, 2021, pp. 85-100. DOI: https://doi.org/10.1016/B978-0-12-821602-6.00007-9

[21] J. Fredriksson, M. Eickhoff, L. Giese, y M. Herzog, "A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application", Sol. Energy, vol. 215, pp. 266-310, feb. 2021, DOI: https://doi.org/10.1016/j.solener.2020.12.017

[22] S. Toghyani, E. Baniasadi, y E. Afshari, "Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector", Energy Convers. Manag., vol. 121, pp. 93-104, ago. 2016, DOI: https://doi.org/10.1016/j.enconman.2016.05.029

[23] R. Silva, M. Pérez, M. Berenguel, L. Valenzuela, y E. Zarza, "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications", Appl. Energy, vol. 121, pp. 233-244, may 2014, DOI: https://doi.org/10.1016/j.apenergy.2014.01.095

[24] R. V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, y A. G. Quiroga, "Exergy analysis of parabolic trough solar receiver", Appl. Therm. Eng., vol. 67, n.o 1, pp. 579-586, jun. 2014, DOI: https://doi.org/10.1016/j.applthermaleng.2014.03.053

[25] S. Peng, H. Hong, H. Jin, y Z. Zhang, "A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants", Sol. Energy, vol. 98, pp. 492-502, dic. 2013, DOI: https://doi.org/10.1016/j.solener.2013.09.039

[26] Natraj, B. N. Rao, y K. S. Reddy, "Wind load and structural analysis for standalone solar parabolic trough collector", Renew. Energy, vol. 173, pp. 688-703, ago. 2021, DOI: https://doi.org/10.1016/j.renene.2021.04.007.

[27] S. A. Kalogirou, "A detailed thermal model of a parabolic trough collector receiver", Energy, vol. 48, n.o 1, pp. 298-306, dic. 2012, DOI: https://doi.org/10.1016/j.energy.2012.06.023 28[28] F. I. Nascimento, E. W. Zavaleta-Aguilar, y J. R. Simões-Moreira, "Algorithm for sizing parabolic-trough solar collectors", Therm. Sci. Eng. Prog., p. 100932, abr. 2021, DOI: https://doi.org/10.1016/j.tsep.2021.100932.

[29] A. Z. Hafez et al., "Design analysis of solar parabolic trough thermal collectors", Renew. Sustain. Energy Rev., vol. 82, pp. 1215-1260, feb. 2018, DOI: https://doi.org/10.1016/j.rser.2017.09.010

[30] W. Qu, R. Wang, H. Hong, J. Sun, y H. Jin, "Test of a solar parabolic trough collector with rotatable axis tracking", Appl. Energy, vol. 207, pp. 7-17, dic. 2017, DOI: https://doi.org/10.1016/j.apenergy.2017.05.114

[31] Y. Yao, Y. Hu, S. Gao, G. Yang, y J. Du, "A multipurpose dual-axis solar tracker with two tracking strategies", Renew. Energy, vol. 72, pp. 88-98, dic. 2014, DOI: https://doi.org/10.1016/j.renene.2014.07.002

[32] M. S. Al-Soud, E. Abdallah, A. Akayleh, S. Abdallah, y E. S. Hrayshat, "A parabolic solar cooker with automatic two axes sun tracking system", Appl. Energy, vol. 87, n.o 2, pp. 463-470, feb. 2010, DOI: https://doi.org/10.1016/j.apenergy.2009.08.035

[33] W. Schiel y T. Keck, "Chapter 9 - Parabolic dish concentrating solar power systems", en Concentrating Solar Power Technology (Second Edition), K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 311-355. DOI: https://doi.org/10.1016/B978-0-12-819970-1.00007-4.

[34] C. Chang, "5 - Tracking solar collection technologies for solar heating and cooling systems", en Advances in Solar Heating and Cooling, R. Z. Wang y T. S. Ge, Eds. Woodhead Publishing, 2016, pp. 81-93. DOI: https://doi.org/10.1016/B978-0-08-100301-5.00005-9.

[35] D. Sakthivadivel, K. Balaji, D. Dsilva Winfred Rufuss, S. Iniyan, y L. Suganthi, "Chapter 1 - Solar energy technologies: principles and applications", en Renewable-Energy-Driven Future, J. Ren, Ed. Academic Press, 2021, pp. 3-42. DOI: https://doi.org/10.1016/B978-0-12-820539-6.00001-7.

[36] J. D. Aequez Florez y M. Y. Almeida Lozano, "Diseño y construcción de un prototipo de colector solar cilíndrico parabólico para la producción de vapor teniendo en cuenta las condiciones climáticas de la zona en las que se encuentra las unidades tecnologías de Santander", Pregrado, Unidades Tecnologicas de Santader, Bucaramanga, 2019.

Descargas

Publicado

2023-03-31 — Actualizado el 2023-03-31

Versiones

Cómo citar

Tarazona-Romero, B. E., Rincón Quintero , A. D. ., Ascanio Villabona, J. G. ., & Sandoval Rodriguez, C. L. (2023). Diseño y construcción de un sistema de seguimiento solar para un prototipo de colector cilindro-parabólico. Scientia Et Technica, 28(01), 6–14. https://doi.org/10.22517/23447214.24792